Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(12): 11665-11678, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37283555

RESUMO

Decorating nanoparticles with antibodies (Ab) is a key strategy for targeted drug delivery and imaging. For this purpose, the orientation of the antibody on the nanoparticle is crucial to maximize fragment antibody-binding (Fab) exposure and thus antigen binding. Moreover, the exposure of the fragment crystallizable (Fc) domain may lead to the engagement of immune cells through one of the Fc receptors. Therefore, the choice of the chemistry for nanoparticle-antibody conjugation is key for the biological performance, and methods have been developed for orientation-selective functionalization. Despite the importance of this issue, there is a lack of direct methods to quantify the antibodies' orientation on the nanoparticle's surface. Here, we present a generic methodology that enables for multiplexed, simultaneous imaging of both Fab and Fc exposure on the surface of nanoparticles, based on super-resolution microscopy. Fab-specific Protein M and Fc-specific Protein G probes were conjugated to single stranded DNAs and two-color DNA-PAINT imaging was performed. Hereby, we quantitatively addressed the number of sites per particle and highlight the heterogeneity in the Ab orientation and compared the results with a geometrical computational model to validate data interpretation. Moreover, super-resolution microscopy can resolve particle size, allowing the study of how particle dimensions affect antibody coverage. We show that different conjugation strategies modulate the Fab and Fc exposure which can be tuned depending on the application of choice. Finally, we explored the biomedical importance of antibody domain exposure in antibody dependent cell mediated phagocytosis (ADCP). This method can be used universally to characterize antibody-conjugated nanoparticles, improving the understanding of relationships between structure and targeting capacities in targeted nanomedicine.


Assuntos
Anticorpos , Nanopartículas , Fagocitose , Microscopia , DNA
2.
Biomacromolecules ; 24(6): 2447-2458, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246400

RESUMO

Two synthetic supramolecular hydrogels, formed from bis-urea amphiphiles containing lactobionic acid (LBA) and maltobionic acid (MBA) bioactive ligands, are applied as cell culture matrices in vitro. Their fibrillary and dynamic nature mimics essential features of the extracellular matrix (ECM). The carbohydrate amphiphiles self-assemble into long supramolecular fibers in water, and hydrogels are formed by physical entanglement of fibers through bundling. Gels of both amphiphiles exhibit good self-healing behavior, but remarkably different stiffnesses. They display excellent bioactive properties in hepatic cell cultures. Both carbohydrate ligands used are proposed to bind to asialoglycoprotein receptors (ASGPRs) in hepatic cells, thus inducing spheroid formation when seeding hepatic HepG2 cells on both supramolecular hydrogels. Ligand nature, ligand density, and hydrogel stiffness influence cell migration and spheroid size and number. The results illustrate the potential of self-assembled, carbohydrate-functionalized hydrogels as matrices for liver tissue engineering.


Assuntos
Matriz Extracelular , Hidrogéis , Ligantes , Hidrogéis/metabolismo , Matriz Extracelular/metabolismo , Carboidratos , Fígado
3.
Phys Rev E ; 106(4-1): 044609, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397475

RESUMO

We model the behavior of a single colloid embedded in a cross-linked polymer gel, immersed in a viscous background fluid. External fields actuate the particle into a periodic motion, which deforms the embedding matrix and creates a local microcavity, containing the particle and any free volume created by its motion. This cavity exists only as long as the particle is actuated and, when present, reduces the local density of the material, leading to swelling. We show that the model exhibits rich resonance features, but is overall characterized by clear scaling laws at low and high driving frequencies, and a pronounced resonance at intermediate frequencies. Our model predictions suggest that both the magnitude and position of the resonance can be varied by varying the material's elastic modulus or cross-linking density, whereas the local viscosity primarily has a dampening effect. Our work implies appreciable free-volume generation is possible by dispersing a collection of colloids in the medium, even at the level of a simple superposition approximation.

4.
Soft Matter ; 18(18): 3594-3604, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481873

RESUMO

Recently, three distinct, well-separated transient regimes were discovered in the dynamics of the volume expansion of shape-shifting liquid crystal network films in response to the switching on of an alternating electric field [Van der Kooij et al., Nat. Commun., 2019, 10, 1]. Employing a spatially resolved, time-dependent Landau theory that couples local volume generation to the degree of orientational order of mesogens that are part of a viscoelastic network, we are able to offer a physical explanation for the existence of three time scales. We find that the initial response is dominated by overcoming the impact of thermal noise, after which the top of the film expands, followed by a permeation of this response into the bulk region. An important signature of our predictions is a significant dependence of the three time scales on the film thickness, where we observe a clear thin-film-to-bulk transition. The point of transition coincides with the emergence of spatial inhomogeneities in the bulk of the film in the form of domains separated by regions of suppressed expansion. This ultimately gives rise to variations in the steady-state overall expansion of the film and may lead to uncontrolled patterning. According to our model, domain formation can be suppressed by (1) decreasing the thickness of the as-prepared film, (2) increasing the linear dimensions of the mesogens, or (3) their degree of orientational order when cross-linked into the network. Our findings provide a handle to achieve finer control over the actuation of smart liquid crystal network coatings.

5.
ACS Nano ; 16(3): 3785-3796, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35274534

RESUMO

Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.


Assuntos
Nanopartículas , Nanotecnologia , Ligantes , Microscopia , Nanomedicina
6.
iScience ; 25(1): 103555, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34988399

RESUMO

Monocytes continuously adapt their shapes for proper circulation and elicitation of effective immune responses. Although these functions depend on the cell mechanical properties, the mechanical behavior of monocytes is still poorly understood and accurate physiologically relevant data on basic mechanical properties are lacking almost entirely. By combining several complementary single-cell force spectroscopy techniques, we report that the mechanical properties of human monocyte are strain-rate dependent, and that chemokines can induce alterations in viscoelastic behavior. In addition, our findings indicate that human monocytes are heterogeneous mechanically and this heterogeneity is regulated by chemokine CCL2. The technology presented here can be readily used to reveal mechanical complexity of the blood cell population in disease conditions, where viscoelastic properties may serve as physical biomarkers for disease progression and response to therapy.

7.
Phys Rev E ; 104(5-1): 054701, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942727

RESUMO

Liquid crystal networks exploit the coupling between the responsivity of liquid crystalline mesogens, e.g., to electric fields, and the (visco)elastic properties of a polymer network. Because of this, these materials have been put forward for a wide array of applications, including responsive surfaces such as artificial skins and membranes. For such applications, the desired functional response must generally be realized under strict geometrical constraints, such as provided by supported thin films. To model such settings, we present a dynamical, spatially heterogeneous Landau-type theory for electrically actuated liquid crystal network films. We find that the response of the liquid crystal network permeates the film from top to bottom, and illustrate how this affects the timescale associated with macroscopic deformation. Finally, by linking our model parameters to experimental quantities, we suggest that the permeation rate can be controlled by varying the aspect ratio of the mesogens and their degree of orientational order when crosslinked into the polymer network, for which we predict a single optimum. Our results contribute specifically to the rational design of future applications involving transport or on-demand release of molecular cargo in liquid crystal network films.

8.
ACS Nano ; 15(10): 15794-15802, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34550677

RESUMO

The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial aspect in many physiological processes. This directional motion is generally controlled via active mechanical and chemical processes. Here we show, by means of molecular dynamics simulations and an analytical theory, that completely passive nanoparticles can exhibit directional motion when embedded in nonuniform mechanical environments. Specifically, we study the motion of a passive nanoparticle adhering to a mechanically nonuniform elastic membrane. We observe a nonmonotonic affinity of the particle to the membrane as a function of the membrane's rigidity, which results in the particle transport. This transport can be both up or down the rigidity gradient, depending on the absolute values of the rigidities that the gradient spans across. We conclude that rigidity gradients can be used to direct average motion of passive macromolecules and nanoparticles on deformable membranes, resulting in the preferential accumulation of the macromolecules in regions of certain mechanical properties.


Assuntos
Nanopartículas , Substâncias Macromoleculares , Simulação de Dinâmica Molecular , Movimento (Física)
9.
Phys Rev E ; 103(3-1): 032402, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862804

RESUMO

Focal adhesions are the loci of cellular adhesion to the extracellular matrix. At these sites, various integrins forge connections between the intracellular cytoskeleton and the outside world; large patches of multiple types of integrins together grip hold of collagen, fibronectin, and other extracellular matrix components. A single focal adhesion will likely contain bonds whose lifetime increases with applied load (catch bonds), and bonds whose lifetime decreases with applied load (slip bonds). Prior work suggests that the combination of different types of integrins is essential for focal adhesion stability and mechanosensory functionality. In the present work, we investigate numerically the interplay between two distinct types of bonds, and we ask how the presence of slip bonds, in the same focal integrin cluster, augments the collective behavior of the catch bonds. We show that mixing these two components may increase the low-force mechanical integrity that may be lacking in pure-catch adhesions, while preserving the potential to strengthen the entire adhesion when a force is applied. We investigate the spatial distribution in mixed-integrin focal adhesions, and we show that the differential response to loading leads, via an excluded volume interaction, to a dependence of the individual integrin diffusivities on the applied load, an effect that has been reported in experiments.


Assuntos
Adesões Focais , Matriz Extracelular , Humanos , Integrinas , Fenômenos Mecânicos
10.
Biophys J ; 120(8): 1483-1497, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33617837

RESUMO

Most cells possess the capacity to locomote. Alone or collectively, this allows them to adapt, to rearrange, and to explore their surroundings. The biophysical characterization of such motile processes, in health and in disease, has so far focused mostly on two limiting cases: single-cell motility on the one hand and the dynamics of confluent tissues such as the epithelium on the other. The in-between regime of clusters, composed of relatively few cells moving as a coherent unit, has received less attention. Such small clusters are, however, deeply relevant in development but also in cancer metastasis. In this work, we use cellular Potts models and analytical active matter theory to understand how the motility of small cell clusters changes with N, the number of cells in the cluster. Modeling and theory reveal our two main findings: cluster persistence time increases with N, whereas the intrinsic diffusivity decreases with N. We discuss a number of settings in which the motile properties of more complex clusters can be analytically understood, revealing that the focusing effects of small-scale cooperation and cell-cell alignment can overcome the increased bulkiness and internal disorder of multicellular clusters to enhance overall migrational efficacy. We demonstrate this enhancement for small-cluster collective durotaxis, which is shown to proceed more effectively than for single cells. Our results may provide some novel, to our knowledge, insights into the connection between single-cell and large-scale collective motion and may point the way to the biophysical origins of the enhanced metastatic potential of small tumor cell clusters.


Assuntos
Neoplasias , Atenção , Biofísica , Movimento Celular , Humanos
11.
Phys Rev E ; 102(4-1): 042703, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212707

RESUMO

Liquid crystal networks combine the orientational order of liquid crystals with the elastic properties of polymer networks, leading to a vast application potential in the field of responsive coatings, e.g., for haptic feedback, self-cleaning surfaces, and static and dynamic pattern formation. Recent experimental work has further paved the way toward such applications by realizing the fast and reversible surface modulation of a liquid crystal network coating upon in-plane actuation with an AC electric field [Liu, Tito, and Broer, Nat. Commun. 8, 1526 (2017)10.1038/s41467-017-01448-w]. Here, we construct a Landau-type theory for electrically-responsive liquid crystal networks and perform molecular dynamics simulations to explain the findings of these experiments and inform on rational design strategies. Qualitatively, the theory agrees with our simulations and reproduces the salient experimental features. We also provide a set of testable predictions: the aspect ratio of the nematogens, their initial orientational order when cross-linked into the polymer network, and the cross-linking fraction of the network all increase the plasticization time required for the film to macroscopically deform. We demonstrate that the dynamic response to oscillating electric fields is characterized by two resonances, which can likewise be influenced by varying these parameters, providing an experimental handle to fine-tune device design.

12.
Biophys J ; 119(11): 2240-2250, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121942

RESUMO

Assessing the structural properties of large proteins is important to gain an understanding of their function in, e.g., biological systems or biomedical applications. We propose a method to examine the mechanical properties of proteins subject to applied forces by means of multiscale simulation. Both stretching and torsional forces are considered, and these may be applied independently of each other. As a proof of principle, we apply torsional forces to a coarse-grained continuum model of the antibody protein immunoglobulin G using fluctuating finite element analysis and use it to identify the area of strongest deformation. This region is essential to the torsional properties of the molecule as a whole because it represents the softest, most deformable domain. Zooming in, this part of the molecule is subjected to torques and stretching forces using molecular dynamics simulations on an atomistically resolved level to investigate its torsional properties. We calculate the torsional resistance as a function of the rotation of the domain while subjecting it to various stretching forces. From this, we assess how the measured twist-torque profiles develop with increasing stretching force and show that they exhibit torsion stiffening, in qualitative agreement with experimental findings. We argue that combining the twist-torque profiles for various stretching forces effectively results in a combined force-torque spectroscopy analysis, which may serve as a mechanical signature for a biological macromolecule.


Assuntos
Torque , Análise de Elementos Finitos , Rotação , Análise Espectral , Torção Mecânica
13.
Phys Rev Lett ; 123(23): 238005, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868451

RESUMO

We employ a matrix-based solver for the linear rheology of fluid-immersed disordered spring networks to reveal four distinct dynamic response regimes. One regime-completely absent in the known vacuum response-exhibits coupled fluid flow and network deformation, with both components responding nonaffinely. This regime contains an additional plateau (peak) in the frequency-dependent storage (loss) modulus-features that vanish without full hydrodynamic interactions. The mechanical response of immersed networks such as biopolymers and hydrogels is thus richer than previously established and offers additional modalities for design and control through fluid interactions.

14.
Tissue Eng Part C Methods ; 25(8): 472-478, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31328661

RESUMO

IMPACT STATEMENT: Vascular tissue engineering (VTE) is a rapidly expanding field, with numerous approaches being explored both in preclinical and clinical settings. A pivotal factor in the development of VTE techniques is patient safety, notably with respect to the mechanical properties of the vessels. Of the mechanical properties, the bursting strength, representing the ability of a vessel to withstand the forces exerted on it by blood pressure, is the most important. The burst pressure is commonly assessed using one of three methods proposed by the ISO 7198. In this study, we evaluate the three burst pressure assessment methods exactly as they are presently in the field of VTE. We show that the indirect assessment methods, as they are presently used, provide inconsistent and therefore unreliable estimates of the true yield stress of a vessel.


Assuntos
Prótese Vascular , Modelos Cardiovasculares , Estresse Mecânico , Resistência à Tração , Animais , Humanos
15.
Phys Rev E ; 99(2-1): 023001, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934326

RESUMO

We investigate the interplay between prestress and mechanical properties in random elastic networks. To do this in a controlled fashion, we introduce an algorithm for creating random free-standing frames that support exactly one state of self-stress. By multiplying all the bond tensions in this state of self-stress by the same number-which with the appropriate normalization corresponds to the physical prestress inside the frame-we systematically evaluate the linear mechanical response of the frame as a function of prestress. After proving that the mechanical moduli of affinely deforming frames are rigorously independent of prestress, we turn to nonaffinely deforming frames. In such frames, prestress has a profound effect on linear response: not only can it change the values of the linear modulus-an effect we demonstrate to be related to a suppressive effect of prestress on nonaffinity-but prestresses also generically trigger a bistable mechanical response. Thus, prestress can be leveraged to both augment the mechanical response of network architectures on the fly, and to actuate finite deformations. These control modalities may be of use in the design of both novel responsive materials and soft actuators.

16.
Soft Matter ; 15(10): 2190-2203, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30747183

RESUMO

Reversible crosslinking is a design paradigm for polymeric materials, wherein they are microscopically reinforced with chemical species that form transient crosslinks between the polymer chains. Besides the potential for self-healing, recent experimental work suggests that freely diffusing reversible crosslinks in polymer networks, such as gels, can enhance the toughness of the material without substantial change in elasticity. This presents the opportunity for making highly elastic materials that can be strained to a large extent before rupturing. Here, we employ Gaussian chain theory, molecular simulation, and polymer self-consistent field theory for networks to construct an equilibrium picture for how reversible crosslinks can toughen a polymer network without affecting its elasticity. Maximisation of polymer entropy drives the reversible crosslinks to bind preferentially near the permanent crosslinks in the network, leading to local molecular reinforcement without significant alteration of the network topology. In equilibrium conditions, permanent crosslinks share effectively the load with neighbouring reversible crosslinks, forming multi-functional crosslink points. The network is thereby globally toughened, while the linear elasticity is left largely unaltered. Practical guidelines are proposed to optimise this design in experiment, along with a discussion of key kinetic and timescale considerations.

17.
J Am Chem Soc ; 141(5): 1989-1997, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30636412

RESUMO

Stiffening due to internal stress generation is of paramount importance in living systems and is the foundation for many biomechanical processes. For example, cells stiffen their surrounding matrix by pulling on collagen and fibrin fibers. At the subcellular level, molecular motors prompt fluidization and actively stiffen the cytoskeleton by sliding polar actin filaments in opposite directions. Here, we demonstrate that chemical cross-linking of a fibrous matrix of synthetic semiflexible polymers with thermoresponsive poly( N-isopropylacrylamide) (PNIPAM) produces internal stress by induction of a coil-to-globule transition upon crossing the lower critical solution temperature of PNIPAM, resulting in a macroscopic stiffening response that spans more than 3 orders of magnitude in modulus. The forces generated through collapsing PNIPAM are sufficient to drive a fluid material into a stiff gel within a few seconds. Moreover, rigidified networks dramatically stiffen in response to applied shear stress featuring power law rheology with exponents that match those of reconstituted collagen and actomyosin networks prestressed by molecular motors. This concept holds potential for the rational design of synthetic materials that are fluid at room temperature and rapidly rigidify at body temperature to form hydrogels mechanically and structurally akin to cells and tissues.


Assuntos
Biopolímeros/química , Hidrogéis/química , Hidrogéis/síntese química , Estrutura Molecular , Temperatura
18.
J Am Chem Soc ; 140(50): 17547-17555, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30465604

RESUMO

The cytoskeleton is a highly adaptive network of filamentous proteins capable of stiffening under stress even as it dynamically assembles and disassembles with time constants of minutes. Synthetic materials that combine reversibility and strain-stiffening properties remain elusive. Here, strain-stiffening hydrogels that have dynamic fibrous polymers as their main structural components are reported. The fibers form via self-assembly of bolaamphiphiles (BA) in water and have a well-defined cross-section of 9 to 10 molecules. Fiber length recovery after sonication, H/D exchange experiments, and rheology confirm the dynamic nature of the fibers. Cross-linking of the fibers yields strain-stiffening, self-healing hydrogels that closely mimic the mechanics of biological networks, with mechanical properties that can be modulated by chemical modification of the components. Comparison of the supramolecular networks with covalently fixated networks shows that the noncovalent nature of the fibers limits the maximum stress that fibers can bear and, hence, limits the range of stiffening.

19.
Phys Rev Lett ; 121(15): 159901, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362797

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.118.078103.

20.
Phys Rev E ; 97(4-1): 042405, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758604

RESUMO

Applying a force to certain supramolecular bonds may initially stabilize them, manifested by a lower dissociation rate. We show that this behavior, known as catch bonding and by now broadly reported in numerous biophysics bonds, is generically expected when either or both the trapping potential and the force applied to the bond possess some degree of nonlinearity. We enumerate possible scenarios and for each identify the possibility and, if applicable, the criterion for catch bonding to occur. The effect is robustly predicted by Kramers theory and Mean First Passage Time theory and confirmed in direct molecular dynamics simulation. Among the catch scenarios, one plays out essentially any time the force on the bond originates in a polymeric object, implying that some degree of catch bond behavior is to be expected in many settings relevant to polymer network mechanics or optical tweezer experiments.


Assuntos
Fenômenos Mecânicos , Polímeros/química , Modelos Moleculares , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...