Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38289789

RESUMO

Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.


Assuntos
Envelhecimento , Demência , Humanos , Idoso , Longevidade , Demência/prevenção & controle , Demência/epidemiologia , Reino Unido , Noruega
2.
J Neurochem ; 167(5): 711-715, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859335

RESUMO

Frode Fonnum died unexpectedly on 26th April 2023, at 86 years of age. He was a tower of strength-a primeval force-in neuroscience, neurochemistry and toxicology. His highly cited publications, comprised salient evidence for GABA and glutamate as brain neurotransmitters. He served as an expert, and as an organizer, including of European research cooperation and as President of the International Society for Neurochemistry (ISN). Photo credit: Per Kristian Opstad.


Assuntos
Encéfalo , Neuroquímica , Neurotransmissores , Ácido Glutâmico
3.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776854

RESUMO

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Assuntos
Aracnoide-Máter , Meninges , Camundongos , Animais , Aracnoide-Máter/anatomia & histologia , Pia-Máter , Plexo Corióideo , Encéfalo
4.
Brain Plast ; 8(2): 169-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36721391

RESUMO

 This is a summary of the 2022 Nansen Neuroscience Lectures. On 10 October 2022, Professors Henriette van Praag and David Gems gave the 2022 Nansen Neuroscience Lectures on the theme "Is ageing inevitable?" in the Norwegian Academy of Science and Letters, Oslo, Norway. While van Praag gave a lecture entitled "The benefits of exercise for brain function", Gems gave the 2nd lecture discussing "What causes ageing? Lessons from The Worm". Understanding the fundamental mechanisms of ageing will pave the way to the development of future interventions to pre-empt the development of the diseases, including Alzheimer's disease and other dementias, of later life.

5.
Acta Physiol (Oxf) ; 231(3): e13587, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244894

RESUMO

AIM: Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA1 -dependent effects on neurogenesis in the two main neurogenic niches. METHODS: Wild-type and HCA1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone. RESULTS: We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment. CONCLUSION: Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA1 activation. This opens for a role of HCA1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Animais , Proliferação de Células , Ácido Láctico , Camundongos , Camundongos Knockout , Neurogênese
6.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899645

RESUMO

The volume, composition, and movement of the cerebrospinal fluid (CSF) are important for brain physiology, pathology, and diagnostics. Nevertheless, few studies have focused on the main structure that produces CSF, the choroid plexus (CP). Due to the presence of monocarboxylate transporters (MCTs) in the CP, changes in blood and brain lactate levels are reflected in the CSF. A lactate receptor, the hydroxycarboxylic acid receptor 1 (HCA1), is present in the brain, but whether it is located in the CP or in other periventricular structures has not been studied. Here, we investigated the distribution of HCA1 in the cerebral ventricular system using monomeric red fluorescent protein (mRFP)-HCA1 reporter mice. The reporter signal was only detected in the dorsal part of the third ventricle, where strong mRFP-HCA1 labeling was present in cells of the CP, the tela choroidea, and the neuroepithelial ventricular lining. Co-labeling experiments identified these cells as fibroblasts (in the CP, the tela choroidea, and the ventricle lining) and ependymal cells (in the tela choroidea and the ventricle lining). Our data suggest that the HCA1-containing fibroblasts and ependymal cells have the ability to respond to alterations in CSF lactate in body-brain signaling, but also as a sign of neuropathology (e.g., stroke and Alzheimer's disease biomarker).


Assuntos
Plexo Corióideo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Terceiro Ventrículo/metabolismo , Animais , Encéfalo/metabolismo , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/fisiologia , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/fisiologia , Fibroblastos/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Terceiro Ventrículo/fisiologia
7.
Cells ; 9(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668809

RESUMO

GABA signaling is involved in a wide range of neuronal functions, such as synchronization of action potential firing, synaptic plasticity and neuronal development. Sustained GABA signaling requires efficient mechanisms for the replenishment of the neurotransmitter pool of GABA. The prevailing theory is that exocytotically released GABA may be transported into perisynaptic astroglia and converted to glutamine, which is then shuttled back to the neurons for resynthesis of GABA-i.e., the glutamate/GABA-glutamine (GGG) cycle. However, an unequivocal demonstration of astroglia-to-nerve terminal transport of glutamine and the contribution of astroglia-derived glutamine to neurotransmitter GABA synthesis is lacking. By genetic inactivation of the amino acid transporter Solute carrier 38 member a1 (Slc38a1)-which is enriched on parvalbumin+ GABAergic neurons-and by intraperitoneal injection of radiolabeled acetate (which is metabolized to glutamine in astroglial cells), we show that Slc38a1 mediates import of astroglia-derived glutamine into GABAergic neurons for synthesis of GABA. In brain slices, we demonstrate the role of Slc38a1 for the uptake of glutamine specifically into GABAergic nerve terminals for the synthesis of GABA depending on demand and glutamine supply. Thus, while leaving room for other pathways, our study demonstrates a key role of Slc38a1 for newly formed GABA, in harmony with the existence of a GGG cycle.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Interneurônios/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/biossíntese , Acetatos/metabolismo , Animais , Glutamina/metabolismo , Camundongos , Modelos Biológicos , Sinapses/metabolismo
8.
PeerJ ; 8: e8328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934509

RESUMO

Lactate treatment has shown a therapeutic potential for several neurological diseases, including Alzheimer's disease. In order to optimize the administration of lactate for studies in mouse models, we compared blood lactate dynamics after intraperitoneal (IP) and subcutaneous (SC) injections. We used the 5xFAD mouse model for familial Alzheimer's disease and performed the experiments in both awake and anaesthetized mice. Blood glucose was used as an indication of the hepatic conversion of lactate. In awake mice, both injection routes resulted in high blood lactate levels, mimicking levels reached during high-intensity training. In anaesthetized mice, SC injections resulted in significantly lower lactate levels compared to IP injections. Interestingly, we observed that awake males had significantly higher lactate levels than awake females, while the opposite sex difference was observed during anaesthesia. We did not find any significant difference between transgenic and wild-type mice and therefore believe that our results can be generalized to other mouse models. These results should be considered when planning experiments using lactate treatment in mice.

9.
Mech Ageing Dev ; 186: 111208, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953124

RESUMO

Nicotinamide adenine dinucleotide (NAD+) plays a fundamental role in life and health through the regulation of energy biogenesis, redox homeostasis, cell metabolism, and the arbitration of cell survival via linkages to apoptosis and autophagic pathways. The importance of NAD+ in ageing and healthy longevity has been revealed from laboratory animal studies and early-stage clinical testing. While basic researchers and clinicians have investigated the molecular mechanisms and translation potential of NAD+, there are still major gaps in applying laboratory science to design the most effective trials. This mini-review was based on the programme and discussions of the 3rd NO-Age Symposium held at the Akershus University Hospital, Norway on the 28th October 2019. This symposium brought together leading basic researchers on NAD+ and clinicians who are leading or are going to perform NAD+ augmentation-related clinical studies. This meeting covered talks about NAD+ synthetic pathways, subcellular homeostasis of NAD+, the benefits of NAD+ augmentation from maternal milk to offspring, current clinical trials of the NAD+ precursor nicotinamide riboside (NR) on Ataxia-Telangiectasia (A-T), Parkinson's disease (PD), post-sepsis fatigue, as well as other potential NR-based clinical trials. Importantly, a consensus is emerging with respect to the design of clinical trials in order to measure meaningful parameters and ensure safety.


Assuntos
Envelhecimento/fisiologia , NAD/metabolismo , Pesquisa Translacional Biomédica , Humanos , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências
10.
Mech Ageing Dev ; 185: 111194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812486

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an important natural molecule involved in fundamental biological processes, including the TCA cycle, OXPHOS, ß-oxidation, and is a co-factor for proteins promoting healthy longevity. NAD+ depletion is associated with the hallmarks of ageing and may contribute to a wide range of age-related diseases including metabolic disorders, cancer, and neurodegenerative diseases. One of the central pathways by which NAD+ promotes healthy ageing is through regulation of mitochondrial homeostasis via mitochondrial biogenesis and the clearance of damaged mitochondria via mitophagy. Here, we highlight the contribution of the NAD+-mitophagy axis to ageing and age-related diseases, and evaluate how boosting NAD+ levels may emerge as a promising therapeutic strategy to counter ageing as well as neurodegenerative diseases including Alzheimer's disease. The potential use of artificial intelligence to understand the roles and molecular mechanisms of the NAD+-mitophagy axis in ageing is discussed, including possible applications in drug target identification and validation, compound screening and lead compound discovery, biomarker development, as well as efficacy and safety assessment. Advances in our understanding of the molecular and cellular roles of NAD+ in mitophagy will lead to novel approaches for facilitating healthy mitochondrial homoeostasis that may serve as a promising therapeutic strategy to counter ageing-associated pathologies and/or accelerated ageing.


Assuntos
Doença de Alzheimer , Inteligência Artificial , Envelhecimento Saudável/fisiologia , Mitocôndrias/fisiologia , Mitofagia/fisiologia , NAD , Biogênese de Organelas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Descoberta de Drogas/métodos , Homeostase , Humanos , Longevidade/fisiologia , NAD/biossíntese , NAD/metabolismo
11.
Cardiovasc Toxicol ; 19(5): 422-431, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30927207

RESUMO

Both human and animal studies have shown mitochondrial and contractile dysfunction in hearts of type 2 diabetes mellitus (T2DM). Exercise training has shown positive effects on cardiac function, but its effect on the mitochondria have been insufficiently explored. The aim of this study was to assess the effect of exercise training on mitochondrial function in T2DM hearts. We divided T2DM mice (db/db) into a sedentary and an interval training group at 8 weeks of age and used heterozygote db/+ as controls. After 8 weeks of training, we evaluated mitochondrial structure and function, as well as the levels of mRNA and proteins involved in key metabolic processes from the left ventricle. db/db animals showed decreased oxidative phosphorylation capacity and fragmented mitochondria. Mitochondrial respiration showed a blunted response to Ca2+ along with reduced protein levels of the mitochondrial calcium uniporter. Exercise training ameliorated the reduced oxidative phosphorylation in complex (C) I + II, CII and CIV, but not CI or Ca2+ response. Mitochondrial fragmentation was partially restored. mRNA levels of isocitrate, succinate and oxoglutarate dehydrogenase were increased in db/db mice and normalized by exercise training. Exercise training induced an upregulation of two transcripts of peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α1 and PGC1α4) previously linked to endurance training adaptations and strength training adaptations, respectively. The T2DM heart showed mitochondrial dysfunction at multiple levels and exercise training ameliorated some, but not all mitochondrial dysfunctions.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Metabolismo Energético , Treinamento Intervalado de Alta Intensidade , Mitocôndrias Cardíacas/metabolismo , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos Mutantes , Mitocôndrias Cardíacas/ultraestrutura , Transdução de Sinais , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
12.
Prog Cardiovasc Dis ; 62(2): 94-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30802460

RESUMO

To date there is no cure available for dementia, and the field calls for novel therapeutic targets. A rapidly growing body of literature suggests that regular endurance training and high cardiorespiratory fitness attenuate cognitive impairment and reduce dementia risk. Such benefits have recently been linked to systemic neurotrophic factors induced by exercise. These circulating biomolecules may cross the blood-brain barrier and potentially protect against neurodegenerative disorders such as Alzheimer's disease. Identifying exercise-induced systemic neurotrophic factors with beneficial effects on the brain may lead to novel molecular targets for maintaining cognitive function and preventing neurodegeneration. Here we review the recent literature on potential systemic mediators of neuroprotection induced by exercise. We focus on the body of translational research in the field, integrating knowledge from the molecular level, animal models, clinical and epidemiological studies. Taken together, the current literature provides initial evidence that exercise-induced, blood-borne biomolecules, such as BDNF and FNDC5/irisin, may be powerful agents mediating the benefits of exercise on cognitive function and may form the basis for new therapeutic strategies to better prevent and treat dementia.


Assuntos
Aptidão Cardiorrespiratória/psicologia , Demência , Treino Aeróbico/métodos , Fatores de Crescimento Neural/fisiologia , Neuroproteção/fisiologia , Cognição/fisiologia , Demência/fisiopatologia , Demência/prevenção & controle , Exercício Físico/fisiologia , Exercício Físico/psicologia , Humanos
13.
Neurochem Res ; 44(1): 22-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30027365

RESUMO

A ketogenic diet (KD; high-fat, low-carbohydrate) can benefit refractory epilepsy, but underlying mechanisms are unknown. We used mice inducibly expressing a mutated form of the mitochondrial DNA repair enzyme UNG1 (mutUNG1) to cause progressive mitochondrial dysfunction selectively in forebrain neurons. We examined the levels of mRNAs and proteins crucial for mitochondrial biogenesis and dynamics. We show that hippocampal pyramidal neurons in mutUNG1 mice, as well as cultured rat hippocampal neurons and human fibroblasts with H2O2 induced oxidative stress, improve markers of mitochondrial biogenesis, dynamics and function when fed on a KD, and when exposed to the ketone body ß-hydroxybutyrate, respectively, by upregulating PGC1α, SIRT3 and UCP2, and (in cultured cells) increasing the oxygen consumption rate (OCR) and the NAD+/NADH ratio. The mitochondrial level of UCP2 was significantly higher in the perikarya and axon terminals of hippocampus CA1 pyramidal neurons in KD treated mutUNG1 mice compared with mutUNG1 mice fed a standard diet. The ß-hydroxybutyrate receptor GPR109a (HCAR2), but not the structurally closely related lactate receptor GPR81 (HCAR1), was upregulated in mutUNG1 mice on a KD, suggesting a selective influence of KD on ketone body receptor mechanisms. We conclude that progressive mitochondrial dysfunction in mutUNG1 expressing mice causes oxidative stress, and that exposure of animals to KD, or of cells to ketone body in vitro, elicits compensatory mechanisms acting to augment mitochondrial mass and bioenergetics via the PGC1α-SIRT3-UCP2 axis (The compensatory processes are overwhelmed in the mutUNG1 mice by all the newly formed mitochondria being dysfunctional).


Assuntos
Dieta Cetogênica/tendências , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 3/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Células Cultivadas , Dieta Cetogênica/métodos , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Camundongos , Camundongos Transgênicos , Biogênese de Organelas , Ratos
14.
Behav Brain Res ; 360: 279-285, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30550949

RESUMO

The energy deficit hypothesis of attention-deficit/hyperactivity disorder (ADHD) suggests that low lactate production by brain astrocytes causes the symptoms of the disorder. Astrocytes are the main producers of lactate in the brain; however, skeletal muscles can produce the most lactate in the body. The lactate production by skeletal muscles increases with physical activity, as does the expression of the lactate transporter monocarboxylate transporter 1 (MCT1) at the blood-brain barrier (BBB). We hypothesise that children with ADHD, by being hyperactive, increase lactate production by skeletal muscles and transport it into the brain to compensate for low supply by astrocytes. The aim of this study was to explore whether the level of MCT1 is altered in the brain in an animal model of ADHD. The MCT1 expression was quantified on hippocampal brain sections from the best available rat model of ADHD, i.e., the spontaneously hypertensive rat (SHR) (n = 12), and the relevant control, the Wistar Kyoto rat (WKY) (n = 12), by the use of quantitative immunofluorescence laser scanning microscopy and postembedding immunogold electron microscopy. The results revealed significantly higher levels of hippocampal MCT1 immunoreactivity in SHR compared to WKY, particularly at the BBB. These results indicate that lactate flux through MCT1 between the body and the brain could be upregulated in children with ADHD. This study adds to previous research suggesting hyperactivity may be beneficial in ADHD; Children with ADHD possibly display a hyperactive behaviour in order to raise skeletal muscle lactate production, MCT1 expression and flux over the BBB to supply the brain with lactate.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Barreira Hematoencefálica/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Regulação para Cima/fisiologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Barreira Hematoencefálica/ultraestrutura , Modelos Animais de Doenças , Masculino , Microscopia Confocal , Microscopia Imunoeletrônica , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/ultraestrutura , Neurópilo/metabolismo , Neurópilo/ultraestrutura , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Análise de Regressão , Especificidade da Espécie , Regulação para Cima/genética
15.
Behav Brain Res ; 360: 209-215, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552946

RESUMO

Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) carry the bulk of excitatory synaptic transmission. Their modulation plays key roles in synaptic plasticity, which underlies hippocampal learning and memory. A dysfunctional glutamatergic system may negatively affect learning abilities and underlie symptoms of attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to investigate whether the expression and function of AMPARs were altered in ADHD. We recorded AMPAR mediated synaptic transmission at hippocampal excitatory synapses and quantified immunogold labelling density of AMPAR subunits GluA1 and GluA2/3 in a rat model for ADHD; the spontaneously hypertensive rat (SHR). Electrophysiological recordings showed significantly reduced AMPAR mediated synaptic transmission at the CA3-to-CA1 pyramidal cell synapses in stratum radiatum and stratum oriens in SHRs compared to control rats. Electronmicroscopic immunogold quantifications did not show any statistically significant changes in labelling densities of the GluA1 subunit of the AMPAR on dendritic spines in stratum radiatum or in stratum oriens. However, there was a significant increase of the GluA2/3 subunit intracellularly in stratum oriens in SHR compared to control, interpreted as a compensatory effect. The proportion of synapses lacking AMPAR subunit labelling was the same in the two genotypes. In addition, electronmicroscopic examination of tissue morphology showed the density of this type of synapse (i.e., asymmetric synapses on spines), and the average size of the synaptic membranes, to be the same. AMPAR dysfunction, possibly involving molecular changes, in hippocampus may in part reflect altered learning in individuals with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Receptores de AMPA/metabolismo , Animais , Animais Recém-Nascidos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Espinhas Dendríticas , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Microscopia Eletrônica , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de AMPA/ultraestrutura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura
17.
Front Mol Neurosci ; 11: 148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867342

RESUMO

Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism.

18.
Biochem J ; 475(4): 749-758, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339464

RESUMO

Propionic acidemia is the accumulation of propionate in blood due to dysfunction of propionyl-CoA carboxylase. The condition causes lethargy and striatal degeneration with motor impairment in humans. How propionate exerts its toxic effect is unclear. Here, we show that intravenous administration of propionate causes dose-dependent propionate accumulation in the brain and transient lethargy in mice. Propionate, an inhibitor of histone deacetylase, entered GABAergic neurons, as could be seen from increased neuronal histone H4 acetylation in the striatum and neocortex. Propionate caused an increase in GABA (γ-amino butyric acid) levels in the brain, suggesting inhibition of GABA breakdown. In vitro propionate inhibited GABA transaminase with a Ki of ∼1 mmol/l. In isolated nerve endings, propionate caused increased release of GABA to the extracellular fluid. In vivo, propionate reduced cerebral glucose metabolism in both striatum and neocortex. We conclude that propionate-induced inhibition of GABA transaminase causes accumulation of GABA in the brain, leading to increased extracellular GABA concentration, which inhibits neuronal activity and causes lethargy. Propionate-mediated inhibition of neuronal GABA transaminase, an enzyme of the inner mitochondrial membrane, indicates entry of propionate into neuronal mitochondria. However, previous work has shown that neurons are unable to metabolize propionate oxidatively, leading us to conclude that propionyl-CoA synthetase is probably absent from neuronal mitochondria. Propionate-induced inhibition of energy metabolism in GABAergic neurons may render the striatum, in which >90% of the neurons are GABAergic, particularly vulnerable to degeneration in propionic acidemia.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Neurônios GABAérgicos/efeitos dos fármacos , Letargia/metabolismo , Propionatos/administração & dosagem , Acidemia Propiônica/metabolismo , 4-Aminobutirato Transaminase/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios GABAérgicos/metabolismo , Glucose/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases , Humanos , Letargia/induzido quimicamente , Letargia/fisiopatologia , Metilmalonil-CoA Descarboxilase/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Acidemia Propiônica/induzido quimicamente , Acidemia Propiônica/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
20.
Nat Commun ; 8: 15557, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534495

RESUMO

Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.


Assuntos
Encéfalo/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Capilares/citologia , Capilares/efeitos dos fármacos , Capilares/metabolismo , Injeções Subcutâneas , Ácido Láctico/administração & dosagem , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Pericitos/metabolismo , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...