Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(51): 10813-10821, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36516875

RESUMO

The organization of the nucleosome array is a critical component of the chromatin assembly into higher order structure as well as its function. Here, we investigated the contributions of the DNA sequence and internucleosomal interactions on the organization of the nucleosomal arrays in compact structures using atomic force microscopy. We assembled nucleosomes on DNA substrates allowing for the formation of tetranucleosomes. We found that nucleosomes are capable of close positioning with no discernible space between them, even in the case of assembled dinucleosomes. This morphology of the array is in contrast with that observed for arrays assembled with repeats of the nucleosome positioning motifs separated by uniform spacers. Simulated assembly of tetranucleosomes by random placement along the substrates revealed that nucleosome array compaction is promoted by the interaction of the nucleosomes. We developed a theoretical model to account for the role of DNA sequence and internucleosomal interactions in the formation of the nucleosome structures. These findings suggest that, in the chromatin assembly, the affinity of the nucleosomes to the DNA sequence and the strengths of the internucleosomal interactions are the two major factors defining the compactness of the chromatin.


Assuntos
Cromatina , Nucleossomos , DNA/química , Microscopia de Força Atômica
2.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361704

RESUMO

The interplay between the mechanical properties of double-stranded and single-stranded DNA is a phenomenon that contributes to various genetic processes in which both types of DNA structures coexist. Highly stiff DNA duplexes can stretch single-stranded DNA (ssDNA) segments between the duplexes in a topologically constrained domain. To evaluate such an effect, we designed short DNA nanorings in which a DNA duplex with 160 bp is connected by a 30 nt single-stranded DNA segment. The stretching effect of the duplex in such a DNA construct can lead to the elongation of ssDNA, and this effect can be measured directly using atomic force microscopy (AFM) imaging. In AFM images of the nanorings, the ssDNA regions were identified, and the end-to-end distance of ssDNA was measured. The data revealed a stretching of the ssDNA segment with a median end-to-end distance which was 16% higher compared with the control. These data are in line with theoretical estimates of the stretching of ssDNA by the rigid DNA duplex holding the ssDNA segment within the nanoring construct. Time-lapse AFM data revealed substantial dynamics of the DNA rings, allowing for the formation of transient crossed nanoring formations with end-to-end distances as much as 30% larger than those of the longer-lived morphologies. The generated nanorings are an attractive model system for investigation of the effects of mechanical stretching of ssDNA on its biochemical properties, including interaction with proteins.


Assuntos
DNA de Cadeia Simples , DNA , Estresse Mecânico , DNA/química , Microscopia de Força Atômica/métodos , Proteínas de Ligação a DNA/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232691

RESUMO

CENP-A is a histone variant found in high abundance at the centromere in humans. At the centromere, this histone variant replaces the histone H3 found throughout the bulk chromatin. Additionally, the centromere comprises tandem repeats of α-satellite DNA, which CENP-A nucleosomes assemble upon. However, the effect of the DNA sequence on the nucleosome assembly and centromere formation remains poorly understood. Here, we investigated the structure of nucleosomes assembled with the CENP-A variant using Atomic Force Microscopy. We assembled both CENP-A nucleosomes and H3 nucleosomes on a DNA substrate containing an α-satellite motif and characterized their positioning and wrapping efficiency. We also studied CENP-A nucleosomes on the 601-positioning motif and non-specific DNA to compare their relative positioning and stability. CENP-A nucleosomes assembled on α-satellite DNA did not show any positional preference along the substrate, which is similar to both H3 nucleosomes and CENP-A nucleosomes on non-specific DNA. The range of nucleosome wrapping efficiency was narrower on α-satellite DNA compared with non-specific DNA, suggesting a more stable complex. These findings indicate that DNA sequence and histone composition may be two of many factors required for accurate centromere assembly.


Assuntos
Divisão do Núcleo Celular , Proteína Centromérica A , Centrômero , DNA , Histonas , Nucleossomos , Autoantígenos/química , Autoantígenos/genética , Divisão do Núcleo Celular/genética , Divisão do Núcleo Celular/fisiologia , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , DNA Satélite , Histonas/genética , Histonas/metabolismo , Humanos , Microscopia de Força Atômica , Nucleossomos/genética , Nucleossomos/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232705

RESUMO

Atomic Force Microscopy (AFM) is widely used for topographic imaging of DNA and protein-DNA complexes in ambient conditions with nanometer resolution. In AFM studies of protein-DNA complexes, identifying the protein's location on the DNA substrate is one of the major goals. Such studies require distinguishing between the DNA ends, which can be accomplished by end-specific labeling of the DNA substrate. We selected as labels three-way DNA junctions (3WJ) assembled from synthetic DNA oligonucleotides with two arms of 39-40 bp each. The third arm has a three-nucleotide overhang, GCT, which is paired with the sticky end of the DNA substrate generated by the SapI enzyme. Ligation of the 3WJ results in the formation of a Y-type structure at the end of the linear DNA mole cule, which is routinely identified in the AFM images. The yield of labeling is 69%. The relative orientation of arms in the Y-end varies, such dynamics were directly visualized with time-lapse AFM studies using high-speed AFM (HS-AFM). This labeling approach was applied to the characterization of the nucleosome arrays assembled on different DNA templates. HS-AFM experiments revealed a high dynamic of nucleosomes resulting in a spontaneous unraveling followed by disassembly of nucleosomes.


Assuntos
DNA , Nucleossomos , DNA/química , Replicação do DNA , Microscopia de Força Atômica/métodos , Oligonucleotídeos/química
5.
Sci Rep ; 11(1): 24086, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916563

RESUMO

Chromatin structure is dictated by nucleosome assembly and internucleosomal interactions. The tight wrapping of nucleosomes inhibits gene expression, but modifications to histone tails modulate chromatin structure, allowing for proper genetic function. The histone H4 tail is thought to play a large role in regulating chromatin structure. Here we investigated the structure of nucleosomes assembled with a tail-truncated H4 histone using Atomic Force Microscopy. We assembled tail-truncated H4 nucleosomes on DNA templates allowing for the assembly of mononucleosomes or dinucleosomes. Mononucleosomes assembled on nonspecific DNA led to decreased DNA wrapping efficiency. This effect is less pronounced for nucleosomes assembled on positioning motifs. Dinucleosome studies resulted in the discovery of two effects- truncation of the H4 tail does not diminish the preferential positioning observed in full-length nucleosomes, and internucleosomal interaction eliminates the DNA unwrapping effect. These findings provide insight on the role of histone H4 in chromatin structure and stability.


Assuntos
Histonas/fisiologia , Nucleossomos/metabolismo , Nucleossomos/fisiologia , DNA/metabolismo , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Microscopia de Força Atômica , Nucleossomos/genética , Nucleossomos/ultraestrutura , Estabilidade Proteica
6.
Biochim Biophys Acta Gen Subj ; 1865(9): 129934, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029641

RESUMO

NF-κB is a transcription factor responsible for activating hundreds of genes in mammalian organisms. To accomplish its function, NF-κB must interact with DNA occupied by nucleosomes, but how this interaction occurs is unclear. Here we used Atomic Force Microscopy to characterize complexes of NF-κB with nucleosomes assembled on different DNA templates. The assembly of NF-κB-nucleosome complexes leads to a substantial decrease of DNA wrapping efficiency from 149 ± 2 bp (SEM) for the control nucleosome sample to 135 ± 3 bp for complexes of nucleosomes with NF-κB. Mapping of the nucleosomes did not reveal displacement of under-wrapped nucleosomes from their original position, suggesting that unravelling involves dissociation of one or both flanks of the nucleosomes. Binding of NF-κB to the core was identified by nucleosome core volume measurements. We discovered two binding modes of NF-κB associated with nucleosome unravelling - NF-κB bound to the nucleosome core and to the DNA flanks. From these findings we propose two models explaining the interaction of NF-κB with the nucleosome complex. The partial unravelling of nucleosomes by NF-κB makes the DNA segment at the edge of the nucleosome core accessible, facilitating the transcription process. We speculate that NF-κB can function as a pioneer factor, enhancing its ability to facilitate rapid transcriptional response to cell stress.


Assuntos
NF-kappa B/metabolismo , Nucleossomos/metabolismo , DNA/metabolismo , Humanos
7.
FASEB J ; 33(10): 10916-10923, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284760

RESUMO

DNA sequence plays an important role in the assembly of nucleosomes, and DNA motifs with high specificity to nucleosomes have been identified. At the same time, important questions such as how the DNA sequence changes DNA wrapping and how the DNA sequence contributes to the interaction between the nucleosomes remain unclear. Here, we addressed these questions by comparing nanoscale properties of nucleosomes assembled on the highest nucleosome positioning sequence, the 601 motif, and essentially random DNA sequences. We used atomic force microscopy to measure the nucleosome positions and the DNA wrapping. The studies showed that nucleosomes assemble on the nonspecific sequence without any preference for position on DNA, but they wrap the same DNA length as DNA of the same length with the 601 sequence. Experiments with longer DNA containing the 601 motif along with nonspecific DNA, capable of forming dinucleosomes, revealed that dinucleosomes assembled on hybrid sequences show a preference for positioning near each other, with one always assembling on the 601 motif. These findings point to the interaction between the nucleosomes and suggest that internucleosomal interactions may play a large role in nucleosome positioning.-Stormberg, T., Stumme-Diers, M., Lyubchenko, Y. L. Sequence-dependent nucleosome nanoscale structure characterized by atomic force microscopy.


Assuntos
Nucleossomos/química , Histonas/química , Microscopia de Força Atômica , Nucleossomos/ultraestrutura , Motivos de Nucleotídeos
8.
J Vis Exp ; (143)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30774135

RESUMO

Chromatin, which is a long chain of nucleosome subunits, is a dynamic system that allows for such critical processes as DNA replication and transcription to take place in eukaryotic cells. The dynamics of nucleosomes provides access to the DNA by replication and transcription machineries, and critically contributes to the molecular mechanisms underlying chromatin functions. Single-molecule studies such as atomic force microscopy (AFM) imaging have contributed significantly to our current understanding of the role of nucleosome structure and dynamics. The current protocol describes the steps enabling high-resolution AFM imaging techniques to study the structural and dynamic properties of nucleosomes. The protocol is illustrated by AFM data obtained for the centromere nucleosomes in which H3 histone is replaced with its counterpart centromere protein A (CENP-A). The protocol starts with the assembly of mono-nucleosomes using a continuous dilution method. The preparation of the mica substrate functionalized with aminopropyl silatrane (APS-mica) that is used for the nucleosome imaging is critical for the AFM visualization of nucleosomes described and the procedure to prepare the substrate is provided. Nucleosomes deposited on the APS-mica surface are first imaged using static AFM, which captures a snapshot of the nucleosome population. From analyses of these images, such parameters as the size of DNA wrapped around the nucleosomes can be measured and this process is also detailed. The time-lapse AFM imaging procedure in the liquid is described for the high-speed time-lapse AFM that can capture several frames of nucleosome dynamics per second. Finally, the analysis of nucleosome dynamics enabling the quantitative characterization of the dynamic processes is described and illustrated.


Assuntos
Imageamento Tridimensional , Microscopia de Força Atômica , Nucleossomos/ultraestrutura , Silicatos de Alumínio/química , Cromatina/química , Humanos , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA