Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960532

RESUMO

(1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Teorema de Bayes , Potenciais Evocados/fisiologia , Estimulação Magnética Transcraniana , Encéfalo/fisiologia
2.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687976

RESUMO

(1) Background: in the field of motor-imagery brain-computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which leads to limited results. To address this limitation, there has been growing interest in leveraging functional brain connectivity (FC) as a feature in MI-BCIs. However, the high inter- and intra-subject variability has so far limited its effectiveness in this domain. (2) Methods: we propose a novel signal processing framework that addresses this challenge. We extracted translation-invariant features (TIFs) obtained from a scattering convolution network (SCN) and brain connectivity features (BCFs). Through a feature fusion approach, we combined features extracted from selected channels and functional connectivity features, capitalizing on the strength of each component. Moreover, we employed a multiclass support vector machine (SVM) model to classify the extracted features. (3) Results: using a public dataset (IIa of the BCI Competition IV), we demonstrated that the feature fusion approach outperformed existing state-of-the-art methods. Notably, we found that the best results were achieved by merging TIFs with BCFs, rather than considering TIFs alone. (4) Conclusions: our proposed framework could be the key for improving the performance of a multiclass MI-BCI system.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Imagens, Psicoterapia , Processamento de Sinais Assistido por Computador
5.
IEEE J Biomed Health Inform ; 27(1): 263-273, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343005

RESUMO

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Inteligência Artificial , Extremidade Superior , Resultado do Tratamento
6.
Sci Rep ; 10(1): 15061, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934259

RESUMO

The pathophysiology of essential tremor (ET) is controversial and might be further elucidated by advanced neuroimaging. Focusing on homogenous ET patients diagnosed according to the 2018 consensus criteria, this study aimed to: (1) investigate whether task functional MRI (fMRI) can identify networks of activated and deactivated brain areas, (2) characterize morphometric and functional modulations, relative to healthy controls (HC). Ten ET patients and ten HC underwent fMRI while performing two motor tasks with their upper limb: (1) maintaining a posture (both groups); (2) simulating tremor (HC only). Activations/deactivations were obtained from General Linear Model and compared across groups/tasks. Voxel-based morphometry and linear regressions between clinical and fMRI data were also performed. Few cerebellar clusters of gray matter loss were found in ET. Conversely, widespread fMRI alterations were shown. Tremor in ET (task 1) was associated with extensive deactivations mainly involving the cerebellum, sensory-motor cortex, and basal ganglia compared to both tasks in HC, and was negatively correlated with clinical tremor scales. Homogeneous ET patients demonstrated deactivation patterns during tasks triggering tremor, encompassing a network of cortical and subcortical regions. Our results point towards a marked cerebellar involvement in ET pathophysiology and the presence of an impaired cerebello-thalamo-cortical tremor network.


Assuntos
Gânglios da Base , Tremor Essencial , Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Idoso , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiopatologia
7.
J Neural Eng ; 17(4): 046040, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32663803

RESUMO

OBJECTIVE: Blood-oxygenated-level dependent (BOLD)-based functional magnetic resonance imaging (fMRI) is a widely used non-invasive tool for mapping brain function and connectivity. However, the BOLD signal is highly affected by non-neuronal contributions arising from head motion, physiological noise and scanner artefacts. Therefore, it is necessary to recover the signal of interest from the other noise-related fluctuations to obtain reliable functional connectivity (FC) results. Several pre-processing pipelines have been developed, mainly based on nuisance regression and independent component analysis (ICA). The aim of this work was to investigate the impact of seven widely used denoising methods on both resting-state and task fMRI. APPROACH: Task fMRI can provide some ground truth given that the task administered has well established brain activations. The resulting cleaned data were compared using a wide range of measures: motion evaluation and data quality, resting-state networks and task activations, FC. MAIN RESULTS: Improved signal quality and reduced motion artefacts were obtained with all advanced pipelines, compared to the minimally pre-processed data. Larger variability was observed in the case of brain activation and FC estimates, with ICA-based pipelines generally achieving more reliable and accurate results. SIGNIFICANCE: This work provides an evidence-based reference for investigators to choose the most appropriate method for their study and data.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
8.
Neural Plast ; 2018: 8105480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780410

RESUMO

Background: Bilateral arm training (BAT) has shown promise in expediting progress toward upper limb recovery in chronic stroke patients, but its neural correlates are poorly understood. Objective: To evaluate changes in upper limb function and EEG power after a robot-assisted BAT in chronic stroke patients. Methods: In a within-subject design, seven right-handed chronic stroke patients with upper limb paresis received 21 sessions (3 days/week) of the robot-assisted BAT. The outcomes were changes in score on the upper limb section of the Fugl-Meyer assessment (FM), Motricity Index (MI), and Modified Ashworth Scale (MAS) evaluated at the baseline (T0), posttraining (T1), and 1-month follow-up (T2). Event-related desynchronization/synchronization were calculated in the upper alpha and the beta frequency ranges. Results: Significant improvement in all outcomes was measured over the course of the study. Changes in FM were significant at T2, and in MAS at T1 and T2. After training, desynchronization on the ipsilesional sensorimotor areas increased during passive and active movement, as compared with T0. Conclusions: A repetitive robotic-assisted BAT program may improve upper limb motor function and reduce spasticity in the chronically impaired paretic arm. Effects on spasticity were associated with EEG changes over the ipsilesional sensorimotor network.


Assuntos
Encéfalo/fisiopatologia , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Idoso , Doença Crônica/reabilitação , Eletroencefalografia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Robótica , Resultado do Tratamento
9.
Front Neuroinform ; 12: 101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30894811

RESUMO

Resting-state networks (RSNs) and functional connectivity (FC) have been increasingly exploited for mapping brain activity and identifying abnormalities in pathologies, including epilepsy. The majority of studies currently available are based on blood-oxygenation-level-dependent (BOLD) contrast in combination with either independent component analysis (ICA) or pairwise region of interest (ROI) correlations. Despite its success, this approach has several shortcomings as BOLD is only an indirect and non-quantitative measure of brain activity. Conversely, promising results have recently been achieved by arterial spin labeling (ASL) MRI, primarily developed to quantify brain perfusion. However, the wide application of ASL-based FC has been hampered by its complexity and relatively low robustness to noise, leaving several aspects of this approach still largely unexplored. In this study, we firstly aimed at evaluating the effect of noise reduction on spatio-temporal ASL analyses and quantifying the impact of two ad-hoc processing pipelines (basic and advanced) on connectivity measures. Once the optimal strategy had been defined, we investigated the applicability of ASL for connectivity mapping in patients with drug-resistant temporal epilepsy vs. controls (10 per group), aiming at revealing between-group voxel-wise differences in each RSN and ROI-wise FC changes. We first found ASL was able to identify the main network (DMN) along with all the others generally detected with BOLD but never previously reported from ASL. For all RSNs, ICA-based denoising (advanced pipeline) allowed to increase their similarity with the corresponding BOLD template. ASL-based RSNs were visibly consistent with literature findings; however, group differences could be identified in the structure of some networks. Indeed, statistics revealed areas of significant FC decrease in patients within different RSNs, such as DMN and cerebellum (CER), while significant increases were found in some cases, such as the visual networks. Finally, the ROI-based analyses identified several inter-hemispheric dysfunctional links (controls > patients) mainly between areas belonging to the DMN, right-left thalamus and right-left temporal lobe. Conversely, fewer connections, predominantly intra-hemispheric, showed the opposite pattern (controls < patients). All these elements provide novel insights into the pathological modulations characterizing a "network disease" as epilepsy, shading light on the importance of perfusion-based approaches for identifying the disrupted areas and communications between brain regions.

10.
J Neural Eng ; 15(2): 026018, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884708

RESUMO

OBJECTIVE: Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. APPROACH: Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. MAIN RESULTS: Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. SIGNIFICANCE: Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.


Assuntos
Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Marcadores de Spin , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Sensório-Motor/diagnóstico por imagem
11.
IEEE J Biomed Health Inform ; 21(5): 1411-1421, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28113682

RESUMO

The application of time-varying measures of causality between source time series can be very informative to elucidate the direction of communication among the regions of an epileptic brain. The aim of the study was to identify the dynamic patterns of epileptic networks in focal epilepsy by applying multivariate adaptive directed transfer function (ADTF) analysis and graph theory to high-density electroencephalographic recordings. The cortical network was modeled after source reconstruction and topology modulations were detected during interictal spikes. First a distributed linear inverse solution, constrained to the individual grey matter, was applied to the averaged spikes and the mean source activity over 112 regions, as identified by the Harvard-Oxford Atlas, was calculated. Then, the ADTF, a dynamic measure of causality, was used to quantify the connectivity strength between pairs of regions acting as nodes in the graph, and the measure of node centrality was derived. The proposed analysis was effective in detecting the focal regions as well as in characterizing the dynamics of the spike propagation, providing evidence of the fact that the node centrality is a reliable feature for the identification of the epileptogenic zones. Validation was performed by multimodal analysis as well as from surgical outcomes. In conclusion, the time-variant connectivity analysis applied to the epileptic patients can distinguish the generator of the abnormal activity from the propagation spread and identify the connectivity pattern over time.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Epilepsia/cirurgia , Humanos , Pessoa de Meia-Idade
12.
Brain Topogr ; 29(2): 322-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26590568

RESUMO

In patients without a behavioral response, non-invasive techniques and new methods of data analysis can complement existing diagnostic tools by providing a method for detecting covert signs of residual cognitive function and awareness. The aim of this study was to investigate the brain oscillatory activities synchronized by single-pulse transcranial magnetic stimulation (TMS) delivered over the primary motor area in the time-frequency domain in patients with the unresponsive wakefulness syndrome or in a minimally conscious state as compared to healthy controls. A time-frequency analysis based on the wavelet transform was used to characterize rapid modifications of oscillatory EEG rhythms induced by TMS in patients as compared to healthy controls. The pattern of EEG changes in the patients differed from that of healthy controls. In the controls there was an early synchronization of slow waves immediately followed by a desynchronization of alpha and beta frequency bands over the frontal and centro-parietal electrodes, whereas an opposite early synchronization, particularly over motor areas for alpha and beta and over the frontal and parietal electrodes for beta power, was seen in the patients. In addition, no relevant modification in slow rhythms (delta and theta) after TMS was noted in patients. The clinical impact of these findings could be relevant in neurorehabilitation settings for increasing the awareness of these patients and defining new treatment procedures.


Assuntos
Sincronização Cortical/fisiologia , Potencial Evocado Motor/fisiologia , Estado Vegetativo Persistente/reabilitação , Estimulação Magnética Transcraniana/métodos , Vigília/fisiologia , Adulto , Idoso , Análise de Variância , Biofísica , Ondas Encefálicas/fisiologia , Eletroencefalografia , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 981-984, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268488

RESUMO

Minimally invasive surgery can be performed with robotic assistance, as evolution of laparoscopic surgery. Robots for assisted surgery are far from being user friendly and require extensive training. To this end, ad-hoc devices and experimental set-ups are needed. The da Vinci system is one of the most diffused surgical robotics technology. The aim of the study was two-fold: i) to propose a neurophysiological measure by which objectively assess the learning progress of the users by means of a simulator of the da Vinci system, and ii) to demonstrate the advantages of cognitive assessment with respect to the standard methodologies for the evaluation of training efficiency.


Assuntos
Laparoscopia/educação , Aprendizagem , Procedimentos Cirúrgicos Robóticos/educação , Adulto , Eletroencefalografia , Humanos , Neurofisiologia , Treinamento por Simulação
14.
Clin EEG Neurosci ; 47(4): 276-290, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26251456

RESUMO

Functional connectivity estimates the temporal synchrony among functionally homogeneous brain regions based on the assessment of the dynamics of topologically localized neurophysiological responses. The aim of this study was to investigate task-related changes in brain activity and functional connectivity by applying different methods namely event-related desynchronization (ERD), coherence, and graph-theoretical analysis to electroencephalographic (EEG) recordings, for comparing their respective descriptive power and complementarity. As it is well known, ERD provides an estimate of differences in power spectral densities between active (or task) and rest conditions, functional connectivity allows assessing the level of synchronization between the signals recorded at different scalp locations and graph analysis enables the estimation of the functional network features and topology. EEG activity was recorded on 10 subjects during left/right arm movements. The theta, alpha, and beta bands were considered. Conventional analysis showed a significant ERD in both alpha and beta bands over the sensorimotor cortex during the left arm movement and in beta band during the right arm movement, besides identifying the regions involved in the task, as it was expected. On the other hand, connectivity assessment highlighted that stronger connections are those that involved the motor regions for which graph analysis revealed reduced accessibility and an increased centrality during the movement. Jointly, the last two methods allow identifying the cortical areas that are functionally related in the active condition as well as the topological organization of the functional network. Results support the hypothesis that network analysis brings complementary knowledge with respect to established approaches for modeling motor-induced functional connectivity and could be profitably exploited in clinical contexts.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Movimento/fisiologia , Rede Nervosa/fisiologia , Volição/fisiologia , Adulto , Algoritmos , Braço/fisiologia , Encéfalo/anatomia & histologia , Sincronização Cortical/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/anatomia & histologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
PLoS One ; 10(5): e0123975, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946055

RESUMO

Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients.


Assuntos
Circulação Cerebrovascular , Epilepsia Resistente a Medicamentos/fisiopatologia , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin , Gravação em Vídeo
16.
Clin Neurophysiol ; 126(9): 1677-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25666728

RESUMO

OBJECTIVE: Interictal epileptiform discharges (IEDs) constitute a perturbation of ongoing cerebral rhythms, usually more frequent during sleep. The aim of the study was to determine whether sleep influences the spread of IEDs over the scalp and whether their distribution depends on vigilance-related modifications in cortical interactions. METHODS: Wake and sleep 256-channel electroencephalography (EEG) data were recorded in 12 subjects with right temporal lobe epilepsy (TLE) differentiated by whether they had mesial or neocortical TLE. Spikes were selected during wake and sleep. The averaged waking signal was subtracted from the sleep signal and projected on a bidimensional scalp map; sleep and wake spike distributions were compared by using a t-test. The superimposed signal of sleep and wake traces was obtained; the rising phase of the spike, the peak, and the deflections following the spike were identified, and their cortical generator was calculated using low-resolution brain electromagnetic tomography (LORETA) for each group. RESULTS: A mean of 21 IEDs in wake and 39 in sleep per subject were selected. As compared to wake, a larger IED scalp projection was detected during sleep in both mesial and neocortical TLE (p<0.05). A series of EEG deflections followed the spike, the cortical sources of which displayed alternating activations of different cortical areas in wake, substituted by isolated, stationary activations in sleep in mesial TLE and a silencing in neocortical TLE. CONCLUSION: During sleep, the IED scalp region increases, while cortical interaction decreases. SIGNIFICANCE: The interaction of cortical modules in sleep and wake in TLE may influence the appearance of IEDs on scalp EEG; in addition, IEDs could be proxies for cerebral oscillation perturbation.


Assuntos
Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/fisiopatologia , Sono/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Clin EEG Neurosci ; 46(4): 347-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25185438

RESUMO

The development of an innovative functional assessment procedure based on the combination of electroencephalography (EEG) and robot-assisted upper limb devices may provide new insights into the dynamics of cortical reorganization promoted by rehabilitation. The aim of this study was to evaluate changes in event-related synchronization/desynchronization (ERS/ERD) in alpha and beta bands in a patient with pure sensory stroke who underwent a specific rehabilitation program for somatic sensation recovery. A 49-year-old, right-handed woman (time since stroke, 12 months) with severe upper limb somatic sensation deficits was tested using validated clinical scales and a standardized video-EEG system combined with the Bi-Manu-Track robot-assisted arm trainer protocol. The patient underwent a 3-month home-based rehabilitation program for promoting upper limb recovery (1 hour a day for 5 days a week). She was tested before treatment, at 1-month, and at 3-month during treatment. Results showed progressive recovery of upper limb function over time. These effects were associated with specific changes in the modulation of alpha and beta event-related synchronization/desynchronization. This unique study provides new perspectives for the assessment of functional deficits and changes in cortical activity promoted by rehabilitation in poststroke patients.


Assuntos
Sincronização Cortical , Eletroencefalografia , Robótica , Acidente Vascular Cerebral/terapia , Extremidade Superior/fisiopatologia , Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento
18.
Brain Topogr ; 28(4): 570-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25070585

RESUMO

Evaluation of consciousness needs to be supported by the evidence of brain activation during external stimulation in patients with unresponsive wakefulness syndrome (UWS). Assessment of patients should include techniques that do not depend on overt motor responses and allow an objective investigation of the spontaneous patterns of brain activity. In particular, electroencephalography (EEG) coherence allows to easily measure functional relationships between pairs of neocortical regions and seems to be closely correlated with cognitive or behavioral measures. Here, we show the contribution of higher order associative cortices of patients with disorder of consciousness (N = 26) in response to simple sensory stimuli, such as visual, auditory and noxious stimulation. In all stimulus modalities an increase of short-range parietal and long-range fronto-parietal coherences in gamma frequencies were seen in the controls and minimally conscious patients. By contrast, UWS patients showed no significant modifications in the EEG patterns after stimulation. Our results suggest that UWS patients can not activate associative cortical networks, suggesting a lack of information integration. In fact, fronto-parietal circuits result to be connectively disrupted, conversely to patients that exhibit some form of consciousness. In the light of this, EEG coherence can be considered a powerful tool to quantify the involvement of cognitive processing giving information about the integrity of fronto-parietal network. This measure can represent a new neurophysiological marker of unconsciousness and help in determining an accurate diagnosis and rehabilitative intervention in each patient.


Assuntos
Transtornos da Consciência/fisiopatologia , Sincronização Cortical , Lobo Frontal/fisiopatologia , Ritmo Gama , Lobo Parietal/fisiopatologia , Percepção/fisiologia , Estimulação Acústica , Adulto , Idoso , Percepção Auditiva/fisiologia , Estimulação Elétrica , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Estimulação Luminosa , Percepção do Tato/fisiologia , Percepção Visual/fisiologia
20.
Brain Topogr ; 28(2): 352-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24838817

RESUMO

A better understanding of cortical modifications related to movement preparation and execution after robot-assisted training could aid in refining rehabilitation therapy protocols for stroke patients. Electroencephalography (EEG) modifications of cortical activity in healthy subjects were evaluated using time-frequency event-related EEG and task-related coherence (TRCoh). Twenty-one channel EEG was recorded in eight subjects during protocols of active, passive, and imagined movements. The subjects performed robot-assisted tasks using the Bi-Manu-Track robot-assisted arm trainer. We applied time-frequency event-related synchronization/desynchronization (ERS/ERD) and TRCoh approaches to investigate where movement-related decreases in power were localized and to study the functional relationships between areas. Our results showed ERD of sensorimotor (SM) area over the contralateral side before the movement and bilateral ERD during execution of the movement. ERD during passive movements was similar in topography to that observed during voluntary movements, but without pre-movement components. No significant difference in time course ERD was observed among the three types of movement over the two SM areas. The TRCoh topography was similar for active and imagined movement; before passive movement, the frontal regions were uncoupled from the SM regions and did not contribute to task performance. This study suggests new perspectives for the evaluation of brain oscillatory activity and the neurological assessment of motor performance by means of quantitative EEG to better understand the planning and execution of movement.


Assuntos
Encéfalo/fisiologia , Mãos/fisiologia , Imaginação/fisiologia , Atividade Motora/fisiologia , Robótica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Movimento (Física) , Periodicidade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...