Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1438(1): 85-98, 1999 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-10216283

RESUMO

In the present study apolipoprotein-mediated free cholesterol (FC) efflux was studied in J774 macrophages having normal cholesterol levels using an experimental design in which efflux occurs in the absence of contributions from cholesteryl ester hydrolysis. The results show that cAMP induces both saturable apolipoprotein (apo) A-I-mediated FC efflux and saturable apo A-I cell-surface binding, suggesting a link between these processes. However, the EC50 for efflux was 5-7-fold lower than the Kd for binding in both control and cAMP-stimulated cells. This dissociation between apo A-I binding and FC efflux was also seen in cells treated for 1 h with probucol which completely blocked FC efflux without affecting apo A-I specific binding. Thus, cAMP-stimulated FC efflux involves probucol-sensitive processes distinct from apo A-I binding to its putative cell surface receptor. FC efflux was also dramatically stimulated in elicited mouse peritoneal macrophages, suggesting that cAMP-regulated apolipoprotein-mediated FC efflux may be important in cholesterol homeostasis in normal macrophages. The presence of a cAMP-inducible cell protein that interacts with lipid-free apo A-I was investigated by chemical cross-linking of 125I-apo A-I with J774 cell surface proteins which revealed a Mr 200 kDa component when the cells were treated with cAMP.


Assuntos
Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , AMP Cíclico/farmacologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , AMP Cíclico/análogos & derivados , Cicloeximida/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Probucol/farmacologia , Tionucleotídeos/farmacologia , Tripsina/farmacologia
2.
J Clin Invest ; 99(4): 773-80, 1997 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9045882

RESUMO

Low concentrations of cyclodextrins (< 1.0 mM) added to serum act catalytically, accelerating the exchange of cholesterol between cells and lipoproteins. J774 macrophages incubated with serum and 2-hydroxypropyl-beta-cyclodextrin (< or = 1 mM) released fivefold more labeled cholesterol than with serum alone. Increased efflux was not accompanied by a change in cell cholesterol mass; thus, cyclodextrin functioned as a cholesterol shuttle, enhancing cholesterol bidirectional flux without changing the equilibrium cholesterol distribution between cells and medium. The addition of phospholipid vesicles to serum and cyclodextrin shifted the equilibrium distribution to favor the medium, producing rapid and extensive depletion of cell cholesterol mass. The combination of serum, phospholipid vesicles, and cyclodextrin also stimulated the rapid clearance of both free and esterified cholesterol from mouse peritoneal macrophages loaded with free and esterified cholesterol. This study: (a) demonstrates that a compound can function as a catalyst to enhance the movement of cholesterol between cells and serum, (b) illustrates the difference between cholesterol exchange and net transport in a cell/serum system, (c) demonstrates how net movement of cholesterol is linked to concentration gradients established by phospholipids, (d) provides a basis for the development of the shuttle/sink model for the first steps in reverse cholesterol transport, (e) validates the model using artificial shuttles (cyclodextrins) and sinks (large unilamellar vesicles), and (f) suggests that cyclodextrin-like cholesterol shuttles might be of pharmacological significance in treating unstable atherosclerotic plaques.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Células Espumosas/metabolismo , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Transporte Biológico/efeitos dos fármacos , Catálise , Colesterol/sangue , Ciclodextrinas/sangue , Células Espumosas/efeitos dos fármacos , Humanos , Lipossomos/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
3.
J Biol Chem ; 271(27): 16026-34, 1996 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-8663188

RESUMO

The efflux of cholesterol from cells in culture to cyclodextrin acceptors has been reported to be substantially more rapid than efflux induced by other known acceptors of cholesterol (Kilsdonk, E. P. C., Yancey, P., Stoudt, G., Bangerter, F. W., Johnson, W. J., Phillips, M. C., and Rothblat, G. H. (1995) J. Biol. Chem. 270, 17250-17256). In this study, we compared the kinetics of cholesterol efflux from cells with 2-hydroxypropyl-beta-cyclodextrins and with discoidal high density lipoprotein (HDL) particles to probe the mechanisms governing the remarkably rapid rates of cyclodextrin-mediated efflux. The rate of cholesterol efflux was enhanced by shaking cells growing in a monolayer and further enhanced by placing cells in suspension to achieve maximal efflux rates. The extent of efflux was dependent on cyclodextrin concentration, and maximal efflux was observed at concentrations >50 mM. For several cell types, biexponential kinetics of cellular cholesterol efflux were observed, indicating the existence of two kinetic pools of cholesterol: a fast pool (half-time (t1/2) approximately 19-23 s) and a slow pool with t1/2 of 15-30 min. Two distinct kinetic pools of cholesterol were also observed with model membranes (large unilamellar cholesterol-containing vesicles), implying that the cellular pools are in the plasma membrane. Cellular cholesterol content was altered by incubating cells with solutions of cyclodextrins complexed with increasing levels of cholesterol. The number of kinetic pools was unaffected by raising the cellular cholesterol content, but the size of the fast pool increased. After depleting cells of the fast pool of cholesterol, this pool was completely restored after a 40-min recovery period. The temperature dependence of cyclodextrin-mediated cholesterol efflux from cells and model membranes was compared; the activation energies were 7 kcal/mol and 2 kcal/mol, respectively. The equivalent activation energy observed with apo-HDL-phospholipid acceptor particles was 20 kcal/mol. It seems that cyclodextrin molecules are substantially more efficient than phospholipid acceptors, because cholesterol molecules desorbing from a membrane surface can diffuse directly into the hydrophobic core of a cyclodextrin molecule without having to desorb completely into the aqueous phase before being sequestered by the acceptor.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Animais , Radioisótopos de Carbono , Linhagem Celular , Humanos , Cinética , Células L , Lipoproteínas HDL/isolamento & purificação , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL3 , Camundongos , Modelos Biológicos , Técnica de Diluição de Radioisótopos , Pele , Trítio
4.
J Biol Chem ; 270(29): 17250-6, 1995 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-7615524

RESUMO

In this study, we compared cholesterol efflux mediated by either high density lipoproteins (HDL3) or beta-cyclodextrins, cyclic oligosaccharides that are able to dissolve lipids in their hydrophobic core. beta-Cyclodextrin, 2-hydroxypropyl-beta-cyclodextrin, and methyl-beta-cyclodextrin at 10 mM induced the release of 50-90% of L-cell [3H]cholesterol after 8 h of incubation, with a major portion of this cholesterol being released in the first 1-2 h of incubation. The cholesterol efflux kinetics are different if cells are incubated with HDL3, which induces a relatively constant rate of release of cholesterol throughout an 8-h incubation. Cholesterol efflux to cyclodextrins was much greater than phospholipid release. To test the hypothesis that maximal efflux rate constants for a particular cell are independent of the type of acceptor, we estimated the maximal rate constants for efflux (Vmax) of cellular cholesterol from L-cells, Fu5AH cells, and GM3468A fibroblasts. The rate constant for HDL3-mediated efflux varied among cell lines in the order Fu5AH > L-cells > fibroblasts. However, these differences were not evident when cyclodextrins were used as cholesterol acceptors. The estimated Vmax values for cyclodextrin-mediated efflux were 3.5-70-fold greater than for HDL3 for the three cell lines. The very high efficiency of cyclodextrins in stimulating cell cholesterol efflux suggests that these compounds can be used in two general ways for studies of atherosclerosis: 1) as research tools to probe mechanisms of cholesterol transport and aspects of membrane structure or 2) as potential pharmacological agents that could modify in vivo cholesterol metabolism and influence the development of the atherosclerotic plaque.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Animais , Células Cultivadas , Células L/metabolismo , Lipoproteínas HDL/metabolismo , Camundongos , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...