Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 107(6): 923-940, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498125

RESUMO

PREMISE: Delimiting biodiversity units is difficult in organisms in which differentiation is obscured by hybridization, plasticity, and other factors that blur phenotypic boundaries. Such work is more complicated when the focal units are subspecies, the definition of which has not been broadly explored in the era of modern genetic methods. Eastwood manzanita (Arctostaphylos glandulosa Eastw.) is a widely distributed and morphologically complex chaparral shrub species with much subspecific variation, which has proven challenging to categorize. Currently 10 subspecies are recognized, however, many of them are not geographically segregated, and morphological intermediates are common. Subspecies delimitation is of particular importance in this species because two of the subspecies are rare. The goal of this study was to apply an evolutionary definition of "subspecies" to characterize structure within Eastwood manzanita. METHODS: We used publicly available geospatial environmental data and reduced-representation genome sequencing to characterize environmental and genetic differentiation among subspecies. In addition, we tested whether subspecies could be differentiated by environmentally associated genetic variation. RESULTS: Our analyses do not show genetic differentiation among subspecies of Eastwood manzanita, with the exception of one of the two rare subspecies. In addition, our environmental analyses did not show ecological differentiation, though limitations of the analysis prevent strong conclusions. CONCLUSIONS: Genetic structure within Eastwood manzanita does not correspond to current subspecies circumscriptions, but rather reflects geographic distribution. Our study suggests that subspecies concepts need to be reconsidered in long-lived plant species, especially in the age of next-generation sequencing.


Assuntos
Evolução Biológica , Deriva Genética , Biodiversidade , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genética , Filogenia
2.
Am J Bot ; 105(3): 536-548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29672830

RESUMO

PREMISE OF THE STUDY: Species formation is an intuitive endpoint of reproductive isolation, but circumscribing taxa that arise during speciation can be difficult because of gene flow, morphological continuity, hybridization or polyploidization, and low sequence variation among newly diverged lineages. Nonetheless, species complexes are ubiquitous, and their classification is essential for understanding how diversity influences ecosystem function. METHODS: We used modern sequencing technology to identify lineages of perennial Claytonia L. and assessed correspondence between genetic lineages and morphological/ecological variation. Subsets of 18 taxa from 63 populations were used for (a) lineage discovery using network and coalescent analyses, (b) leaf shape analyses using elliptical Fourier analysis and ordination, and (c) ecological analyses (soil chemistry, climate) using ANOVA and ordination. KEY RESULTS: Samples mainly aggregated into groups representing each of the previously recognized species in each of the genetic data sets. Compared to the double-digest restriction-site-associated DNA sequencing data set, genome skimming data provided more resolution and further opportunity to probe into patterns of nuclear and chloroplast genome diversity. Morphological and ecological associations are significantly different (albeit intergrading) among the taxa investigated. A new species, Claytonia crawfordii, is described based on morphological data presented here. CONCLUSIONS: Genetic data presented in this study provide some of the first insights into phylogenetic relationships among recently diverged perennial Claytonia and are suggestive of past hybridization among caudicose and tuberous species. Given prior difficulties in understanding species boundaries among newly diverged plant lineages, this case study demonstrates the revolutionary breakthrough for systematics research that high throughput sequencing represents.


Assuntos
Ecologia , Evolução Molecular , Especiação Genética , Hibridização Genética , Filogenia , Folhas de Planta/anatomia & histologia , Portulacaceae/genética , Sequência de Bases , Classificação , Clima , DNA de Plantas/análise , Ecossistema , Fluxo Gênico , Variação Genética , Genoma de Cloroplastos , Genoma de Planta , Genômica/métodos , Fenótipo , Poliploidia , Portulacaceae/anatomia & histologia , Isolamento Reprodutivo , Análise de Sequência de DNA , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...