Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadk2051, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416837

RESUMO

Sweet orange (Citrus sinensis) exhibits limited genetic diversity and high susceptibility to Huanglongbing (HLB). Breeding HLB-tolerant orange-like hybrids is in dire need. However, our understanding of the key compounds responsible for orange flavor and their genetic regulation remains elusive. Evaluating 179 juice samples, including oranges, mandarins, Poncirus trifoliata, and hybrids, distinct volatile compositions were found. A random forest model predicted untrained samples with 78% accuracy and identified 26 compounds crucial for orange flavor. Notably, seven esters differentiated orange from mandarin flavor. Cluster analysis showed six esters with shared genetic control. Differential gene expression analysis identified C. sinensis alcohol acyltransferase 1 (CsAAT1) responsible for ester production in orange. Its activity was validated through overexpression assays. Phylogeny revealed the functional allele was inherited from pummelo. A SNP-based DNA marker in the coding region accurately predicted phenotypes. This study enhances our understanding of orange flavor compounds and their biosynthetic pathways and expands breeding options for orange-like cultivars.


Assuntos
Citrus sinensis , Citrus , Melhoramento Vegetal , Citrus sinensis/genética , Citrus sinensis/química , Citrus sinensis/metabolismo , Citrus/química , Frutas/química , Análise por Conglomerados
2.
Microorganisms ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375030

RESUMO

Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of insecticides and antibiotics, where effectiveness is limited and may have negative impacts on beneficial and non-target organisms. Thus, there is an urgent need for the development of effective and sustainable treatment options to reduce or eliminate CLas from infected trees. In the present study, we screened citrus-derived endophytes, their cell-free culture supernatants (CFCS), and crude plant extracts for antimicrobial activity against two culturable surrogates of CLas, Sinorhizobium meliloti and Liberibacter crescens. Candidates considered high-potential antimicrobial agents were assessed directly against CLas in vitro, using a propidium monoazide-based assay. As compared to the negative controls, statistically significant reductions of viable CLas cells were observed for each of the five bacterial CFCS. Subsequent 16S rRNA gene sequencing revealed that each of the five bacterial isolates were most closely related to Bacillus amyloliquefaciens, a species dominating the market of biological control products. As such, the aboveground endosphere of asymptomatic survivor citrus trees, grown in an organic orchard, were found to host bacterial endophytes capable of effectively disrupting CLas cell membranes. These results concur with the theory that native members of the citrus microbiome play a role in the development of HLB. Here, we identify five strains of Bacillus amyloliquefaciens demonstrating notable potential to be used as sources of novel antimicrobials for the sustainable management of HLB.

3.
J Food Sci ; 88(4): 1684-1699, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36905139

RESUMO

Hybrids of Poncirus trifoliata L. Raf. with Citrus have shown degrees of tolerance to the deadly citrus greening disease, hence prompting interest as potential commercial varieties. Although P. trifoliata is known to produce fruit that is inedible, fruit from many advanced hybrid trees have not been evaluated for their quality potential. The sensory quality of selected Citrus hybrids with varying degrees of P. trifoliata in their pedigrees is reported herein. Four Citrus × P. trifoliata hybrids developed through the USDA Citrus scion breeding program-1-76-100, 1-77-105, 5-18-24, and 5-18-31-had acceptable eating quality and sweet and sour taste, with mandarin, orange, fruity-noncitrus, and floral flavors. On the other hand, hybrids with higher proportion of P. trifoliata in their pedigrees, US 119 and 6-23-20, produced a juice characterized by green, cooked, bitter, and Poncirus-like flavor and aftertaste. Partial least square regressions revealed that the Poncirus-like off-flavor is likely due to a combination of higher than typical amounts of sesquiterpene hydrocarbons (woody/green odor), monoterpenes (citrus/pine), and terpene esters (floral) and a lack of aldehydes with typical citrus odor (octanal, nonanal, and decanal). Sweetness and sourness were mostly explained by high sugars and acids, respectively. Further, carvones and linalool contributed to sweetness in the samples from early and late seasons, respectively. In addition to highlighting chemical contributors to sensory descriptors in Citrus × P. trifoliata hybrids, this study provides useful information on sensory quality for future citrus breeding efforts. PRACTICAL APPLICATION: The relationships between the sensory quality and secondary metabolites of Citrus × P. trifoliata hybrids described in this study help identify disease-resistant Citrus scion hybrids with acceptable flavor and help mobilize this resistance in future breeding efforts. It also shows potential of such hybrids to be commercialized.


Assuntos
Citrus sinensis , Citrus , Poncirus , Citrus/genética , Citrus/química , Poncirus/genética , Melhoramento Vegetal , Citrus sinensis/química , Paladar
4.
Front Plant Sci ; 13: 869178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586217

RESUMO

We adopted a systems-based approach to determine the role of two Candidatus Liberibacter asiaticus (CLas) proteins, LasP 235 and Effector 3, in Huanglongbing (HLB) pathogenesis. While a published work suggests the involvement of these CLas proteins HLB pathogenesis, the exact structure-based mechanism of their action has not been elucidated. We conducted the following experiments to determine the structure-based mechanisms of action. First, we immunoprecipitated the interacting citrus protein partners of LasP 235 and Effector 3 from the healthy and CLas-infected Hamlin extracts and identified them by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Second, we performed a split green fluorescent protein (GFP) assay in tobacco to validate that the interactions observed in vitro are also retained in planta. The notable in planta citrus targets of LasP 235 and Effector 3 include citrus innate immune proteins. Third, in vitro and in planta studies were performed to show that LasP 235 and Effector 3 interact with and inhibit the functions of multiple citrus proteins belonging to the innate immune pathways. These inhibitory interactions led to a high level of reactive oxygen species, blocking of bactericidal lipid transfer protein (LTP), and induction of premature programed cell death (PCD), all of which are beneficial to CLas lifecycle and HLB pathogenesis. Finally, we performed molecular dynamics simulations to visualize the interactions of LasP 235 and Effector 3, respectively, with LTP and Kunitz protease inhibitor. This led to the design of an LTP mimic, which sequestered and blocked LasP 235 and rescued the bactericidal activity of LTP thereby proving that LasP 235 , indeed, participates in HLB pathogenesis.

6.
Hortic Res ; 7: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194974

RESUMO

Huanglongbing (HLB) is a disease that has devastated the Florida citrus industry, threatens the entire U.S. citrus industry, and globally is rapidly spreading. Florida's citrus production is 90% sweet orange, which is quite sensitive to HLB. The heavy reliance on sweet orange for Florida citrus production makes the industry especially vulnerable to diseases that are damaging to this type of citrus. Furthermore, 90% of Florida oranges are used in producing orange juice that is defined by a federal regulation known as the "orange juice standard", specifying that at least 90% of "orange juice" must be derived from Citrus sinensis. Genomic analyses definitively reveal that sweet orange is not a true species, but just one of many introgression hybrids of C. reticulata and C. maxima, with phenotypic diversity resulting from accumulated mutations in this single hybrid, the "sweet orange". No other fruit industry is limited by law to such a narrow genetic base. Fortunately, there are new citrus hybrids displaying reduced sensitivity to HLB, and in some cases they produce juice, alone or in blends, that consumers would recognize as "orange juice". Reconsidering current regulations on orange juice standards may permit use of such hybrids in "orange juice", providing greater latitude for commercialization of these hybrids, leading to higher-quality orange juice and a more sustainable Florida orange juice industry.

7.
Plant Methods ; 15: 85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384290

RESUMO

BACKGROUND: Most bacteria are not culturable, but can be identified through molecular methods such as metagenomics studies. Due to specific metabolic requirements and symbiotic relationships, these bacteria cannot survive on typical laboratory media. Many economically and medically important bacteria are unculturable; including phloem-limited plant pathogens like Candidatus Liberibacter asiaticus (CLas). CLas is the most impactful pathogen on citrus production, is vectored by the Asian citrus psyllid (ACP, Diaphorina citri), and lacks an effective treatment or resistant cultivars. Research into CLas pathogenicity and therapy has been hindered by the lack of persistent pure cultures. Work to date has been mostly limited to in planta studies that are time and resource intensive. RESULTS: We developed and optimized an in vitro protocol to quickly test the effectiveness of potential therapeutic agents against CLas. The assay uses intact bacterial cells contained in homogenized tissue from CLas-infected ACP and a propidium monoazide (PMA) assay to measure antimicrobial activity. The applicability of PMA was evaluated; with the ability to differentiate between intact and disrupted CLas cells confirmed using multiple bactericidal treatments. We identified light activation conditions to prevent PCR interference and identified a suitable positive control for nearly complete CLas disruption (0.1% Triton-X 100). Isolation buffer components were optimized with 72 mM salt mixture, 1 mM phosphate buffer and 1% glycerol serving to minimize unwanted interactions with treatment and PMA chemistries and to maximize recovery of intact CLas cells. The mature protocol was used to compare a panel of peptides already under study for potential CLas targeting bactericidal activity and identify which were most effective. CONCLUSION: This psyllid homogenate assay allows for a quick assessment of potential CLas-disrupting peptides. Comparison within a uniform isolate largely eliminates experimental error arising from variation in CLas titer between and within individual host organisms. Use of an intact vs. disrupted assay permits direct assessment of potential therapeutic compounds without generating pure cultures or conducting extensive in planta or field studies.

8.
Hortic Res ; 6: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231534

RESUMO

Plants have a perception system triggered by pathogen and pest signals to initiate defense. These signals include evolutionarily conserved molecules from microbes and insects termed pathogen/herbivore-associated molecular patterns (PAMPs/HAMPs). Here we showed that hexaacetyl-chitohexaose (HC), an oligosaccharide from chitin, a structural component in insect exoskeletons and fungi cell walls, upregulated defense-associated genes WRKY22, GST1, RAR1, EDS1, PAL1 and NPR2, and downregulated ICS1 at 1 h after HC treatment in Sun Chu Sha mandarin leaves. The effect was transient as defense gene transcriptional changes were not observed at 18 h after the treatment. Electrical penetration graph (EPG) recordings were used to study the feeding behavior of Asian citrus psyllid (ACP) following the HC treatment. ACP is the hemipteran vector of Candidatus Liberibacter asiaticus (CLas), the pathogen associated with huanglongbing (HLB). Adult ACP displayed reduced intercellular probing, reduced xylem feeding count and duration, and increased non-probing activity on HC-treated citrus compared to controls. During an 18-h recording, percentage for total duration of xylem ingestion, phloem ingestion, intercellular probing were lower, and the percentage of non-probing behavior was higher in HC-treated leaves than in controls. In host-selection behavior studies, HC treatment did not alter the attractiveness of citrus leaves under light or dark conditions. In addition, ACP feeding on HC-treated leaves did not show differences in mortality for up to 10 day of exposure. In summary, we report that HC induced a transient defense in citrus and an inhibitory effect on ACP feeding but did not affect host selection or the insect fitness under the tested conditions.

9.
BMC Plant Biol ; 19(1): 122, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940073

RESUMO

BACKGROUND: Citrus Huanglongbing (HLB) is a bacterial disease with high economic significance. The associated agent Candidatus Liberibacter asiaticus is a fastidious, phloem-limited, intracellular bacterium that is transmitted by an insect vector the Asian citrus psyllid (ACP). The genome of Ca. L. asiaticus contains protein secretion machinery that suggests host cell modulation capacity of this bacterium. RESULTS: A total of 28 candidate effectors, an important class of secreted proteins, were predicted from the Ca. L. asiaticus genome. Sequence specific primers were designed for reverse transcription (RT) and quantitative PCR (qPCR), and expression was validated for 20 of the effector candidates in infected citrus with multiple genetic background. Using detached leaf inoculation, the mRNA of effectors was detected from 6 h to 7 days post ACP exposure. It was observed that higher bacterial titers were associated with a larger number of effectors showing amplification across all samples. The effectors' expression were compared in citrus hosts with various levels of HLB tolerance, including susceptible Duncan grapefruit and Washington navel orange, tolerant citron and Cleopatra mandarin, and resistant Pomeroy trifoliate and Carrizo citrange. Across all genotypes relatively high expression was observed for CLIBASIA_03695, CLIBASIA_00460, CLIBASIA_00420, CLIBASIA_04580, CLIBASIA_05320, CLIBASIA_04425, CLIBASIA_00525 and CLIBASIA_05315 in either a host-specific or -nonspecific manners. The two genotypes in each HLB-response group also show effector-expression profiles that seem to be different. In a companion study, the expression of effectors was compared between leaves and roots of own-rooted citrus that had been Ca. L. asiaticus-infected for more than a year. Results indicated relatively high expression of CLIBASIA_03875, CLIBASIA_04800 and CLIBASIA_05640 in all leaf and some root tissues of citron, Duncan and Cleopatra. CONCLUSION: This temporal and spatial expression analysis of Ca. L. asiaticus effectors identified candidates possibly critical for early bacterial colonization, host tolerance suppression and long-term survival which are all worthy of further investigation.


Assuntos
Proteínas de Bactérias/genética , Citrus/microbiologia , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Animais , Citrus/imunologia , Resistência à Doença , Genótipo , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Floema/imunologia , Floema/microbiologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , RNA Bacteriano/genética , RNA Mensageiro/genética , Rhizobiaceae/fisiologia
10.
Front Plant Sci ; 9: 1694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542355

RESUMO

Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.

11.
J Microsc Ultrastruct ; 6(1): 56-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023267

RESUMO

BACKGROUND AND SIGNIFICANCE: Foliar trichomes (tiny hair-like structures) are part of the plant defense mechanisms that may confer resistance to some herbivore pests. Trifoliate orange, Poncirus trifoliata, is a genotype resistant to infestations by the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), vector of the economically important citrus greening (huanglongbing) disease bacterium. We discovered that dense trichomes are associated with young leaves of trifoliate orange plants and hypothesized that these might be responsible for reduced infestation by this psyllid. MATERIALS AND METHODS: Epifluorescence and stereomicroscopy were used to study the density and structure of trichomes associated with young flush leaves and stems of trifoliate orange and of five other plant genotypes that are highly susceptible to colonization by the psyllid: lemon, grapefruit, sweet orange, curry leaf, and orange jasmine. RESULTS: Simple unicellular trichomes were observed at moderate-to-large densities on young leaves and stems of each genotype except lemon and sweet orange, which had considerably fewer trichomes. Trichomes were generally abundant on young leaves of curry leaf and orange jasmine, two genotypes that are often heavily colonized by the psyllid. Although we did not quantify oviposition rates on these genotypes, we observed that psyllid females deposited eggs on young leaves, buds, and stems regardless of the density of trichomes present, sometimes directly within or close to a dense bed of trichomes. CONCLUSIONS: While trichomes were moderately abundant on young leaves of trifoliate orange, our results strongly suggest that these trichomes may play little or no role in reduced colonization by the psyllid on this genotype.

12.
Mol Plant Microbe Interact ; 31(2): 200-211, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29148926

RESUMO

The 22-amino acid (flg22) pathogen-associated molecular pattern from the flagellin of Xanthomonas citri subsp. citri has been shown to induce defense responses correlated with citrus canker resistance. Here, flg22 of 'Candidatus Liberibacter asiaticus', the putative causal agent of Huanglongbing (HLB), elicited differential defense responses that were weaker than those from Xcc-flg22, between those of the HLB-tolerant mandarin cultivar Sun Chu Sha and susceptible grapefruit cultivar Duncan. Transcriptomics was used to compare the effect of CLas-flg22 and Xcc-flg22 between the citrus genotypes and identified 86 genes induced only by CLas-flg22 in the tolerant mandarin. Expression of 16 selected genes was validated, by reverse transcription-quantitative polymerase chain reaction, and was evaluated in citrus during 'Ca. L. asiaticus' infection. Differential expression of a number of genes occurred between tolerant and susceptible citrus infected with 'Ca. L. asiaticus', suggesting their involvement in HLB tolerance. In addition, several genes were similarly regulated by CLas-flg22 and 'Ca. L. asiaticus' treatments, while others were oppositely regulated in the tolerant mandarin, suggesting similarity and interplay between CLas-flg22 and 'Ca. L. asiaticus'-triggered defenses. Genes identified are valuable in furthering the study of HLB tolerance mechanisms and, potentially, for screening for HLB-tolerant citrus using CLas-flg22 as a pathogen proxy.


Assuntos
Citrus/microbiologia , Flagelina/imunologia , Predisposição Genética para Doença , Bactérias Gram-Negativas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Bactérias Gram-Negativas/imunologia , Espécies Reativas de Oxigênio
13.
PLoS One ; 12(10): e0186810, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049366

RESUMO

Citrus Huanglongbing (HLB) associated with 'Candidatus Liberibacter asiaticus' (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in vitro for their potential application in genetic engineering. D2A21 was one of the most active AMPs against X. citri, Agrobacterium tumefaciens and Sinorhizobium meliloti with low hemolysis activity. Therefore, we conducted this work to assess transgenic expression of D2A21 peptide to achieve citrus resistant to canker and HLB. We generated a construct expressing D2A21 and initially transformed tobacco as a model plant. Transgenic tobacco expressing D2A21 was obtained by Agrobacterium-mediated transformation. Successful transformation and D2A21 expression was confirmed by molecular analysis. We evaluated disease development incited by Pseudomonas syringae pv. tabaci in transgenic tobacco. Transgenic tobacco plants expressing D2A21 showed remarkable disease resistance compared to control plants. Therefore, we performed citrus transformations with the same construct and obtained transgenic Carrizo citrange. Gene integration and gene expression in transgenic plants were determined by PCR and RT-qPCR. Transgenic Carrizo expressing D2A21 showed significant canker resistance while the control plants showed clear canker symptoms following both leaf infiltration and spray inoculation with X. citri 3213. Transgenic Carrizo plants were challenged for HLB evaluation by grafting with Las infected rough lemon buds. Las titer was determined by qPCR in the leaves and roots of transgenic and control plants. However, our results showed that transgenic plants expressing D2A21 did not significantly reduce Las titer compared to control plants. We demonstrated that transgenic expression of D2A21 conferred resistance to diseases incited by P. syringae pv. tabaci and X. citri but not Las. Our results underscore the difficulty in controlling HLB compared to other bacterial diseases.


Assuntos
Bactérias/metabolismo , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Xanthomonas/patogenicidade , Peptídeos Catiônicos Antimicrobianos , Citrus/genética , Citrus/microbiologia , Genes de Plantas , Vetores Genéticos , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/microbiologia
14.
Hortic Res ; 4: 17041, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904803

RESUMO

Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo (Bower citrus hybrid (Citrus reticulata×C. reticulata×C. paradisi)×Temple (C. reticulata×C. sinensis)), grapefruit (C. paradisi), Pineapple sweet orange (C. sinensis), and their seedless mutants. Seed abortion in seedless mutants was observed at 26 days post anthesis (Time point 2). Affymetrix transcriptomic analysis revealed 359 to 1077 probe sets with differential transcript abundance in the comparison of seedless versus seedy fruits for each citrus genotypes and time points. The GDTA identified by 18 microarray probe sets were validated by qPCR. Hierarchical clustering analysis revealed a range of GDTA associated with development, hormone and protein metabolism, all of which may reflect genes associated with seedless fruit development. There were 14, 9 and 12 genes found exhibiting similar abundance ratios in all three seedless versus seedy genotype comparisons at time point 1, 2 and 3, respectively. Among those genes were genes coding for an aspartic protease and a cysteine protease, which may play important roles in seedless fruit development. New insights into seedless citrus fruit development may contribute to biotech approaches to create seedless cultivars.

15.
Plant J ; 90(5): 1014-1025, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28231382

RESUMO

Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species.


Assuntos
Produtos Agrícolas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Transgenes/genética , Solanum lycopersicum/genética , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/genética , Triticum/genética , Zea mays/genética
16.
GM Crops Food ; 8(2): 85-105, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28051907

RESUMO

The level of anthocyanins in plants vary widely among cultivars, developmental stages and environmental stimuli. Previous studies have reported that the expression of various MYBs regulate anthocyanin pigmentation during growth and development. Here we examine the activity of 3 novel R2R3-MYB transcription factor (TF) genes, PamMybA.1, PamMybA.3 and PamMybA.5 from Prunus americana. The anthocyanin accumulation patterns mediated by CaMV double35S promoter (db35Sp) controlled expression of the TFs in transgenic tobacco were compared with citrus-MoroMybA, Arabidopsis-AtMybA1 and grapevine-VvMybA1 transgenics during their entire growth cycles. The db35Sp-PamMybA.1 and db35Sp-PamMybA.5 constructs induced high levels of anthocyanin accumulation in both transformed tobacco calli and the regenerated plants. The red/purple color pigmentation induced in the PamMybA.1 and PamMybA.5 lines was not uniformly distributed, but appeared as patches in the leaves, whereas the flowers showed intense uniform pigmentation similar to the VvMybA1 expressing lines. MoroMybA and AtMybA1 showed more uniform pink coloration in both vegetative and reproductive tissues. Plant morphology, anthocyanin content, seed viability, and transgene inheritance were examined for the PamMybA.5 transgenic plants and compared with the controls. We conclude that these TFs alone are sufficient for activating anthocyanin production in plants and may be used as visible reporter genes for plant transformation. Evaluating these TFs in a heterologous crop species such as citrus further validated that these genes can be useful for the metabolic engineering of anthocyanin production and cultivar enhancement.


Assuntos
Antocianinas/metabolismo , Arabidopsis/genética , Citrus/genética , Regulação da Expressão Gênica de Plantas , Prunus/genética , Vitis/genética , Pigmentação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Sementes/genética , Sementes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
17.
Front Plant Sci ; 7: 1078, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499757

RESUMO

Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the US citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized endogenous citrus thionins and investigated their expression in different citrus tissues. Since no HLB-resistant citrus cultivars have been identified, we attempted to develop citrus resistant to both HLB and citrus canker through overexpression of a modified plant thionin. To improve effectiveness for disease resistance, we modified and synthesized the sequence encoding a plant thionin and cloned into the binary vector pBinPlus/ARS. The construct was then introduced into Agrobacterium strain EHA105 for citrus transformation. Transgenic Carrizo plants expressing the modified plant thionin were generated by Agrobacterium-mediated transformation. Successful transformation and transgene gene expression was confirmed by molecular analysis. Transgenic Carrizo plants expressing the modified thionin gene were challenged with X. citri 3213 at a range of concentrations, and a significant reduction in canker symptoms and a decrease in bacterial growth were demonstrated compared to nontransgenic plants. Furthermore, the transgenic citrus plants were challenged with HLB via graft inoculation. Our results showed significant Las titer reduction in roots of transgenic Carrizo compared with control plants and reduced scion Las titer 12 months after graft inoculation. These data provide promise for engineering citrus disease resistance against HLB and canker.

18.
Front Plant Sci ; 7: 933, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446161

RESUMO

Huanglongbing (HLB) is currently the most destructive disease of citrus worldwide. Although there is no immune cultivar, field tolerance to HLB within citrus and citrus relatives has been observed at the USDA Picos farm at Ft. Pierce, Florida, where plants have been exposed to a very high level of HLB pressure since 2006. In this study, we used RNA-Seq to evaluate expression differences between two closely related cultivars after HLB infection: HLB-tolerant "Jackson" grapefruit-like-hybrid trees and HLB susceptible "Marsh" grapefruit trees. A total of 686 genes were differentially expressed (DE) between the two cultivars. Among them, 247 genes were up-expressed and 439 were down-expressed in tolerant citrus trees. We also identified a total of 619 genes with significant differential expression of alternative splicing isoforms between HLB tolerant and HLB susceptible citrus trees. We analyzed the functional categories of DE genes using two methods, and revealed that multiple pathways have been suppressed or activated in the HLB tolerant citrus trees, which lead to the activation of the basal resistance or immunity of citrus plants. We have experimentally verified the expressions of 14 up-expressed genes and 19 down-expressed genes on HLB-tolerant "Jackson" trees and HLB-susceptible "Marsh" trees using real time PCR. The results showed that the expression of most genes were in agreement with the RNA-Seq results. This study provided new insights into HLB-tolerance and useful guidance for breeding HLB-tolerant citrus in the future.

19.
Mol Plant Microbe Interact ; 29(2): 132-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26554734

RESUMO

Overexpression of plant pattern-recognition receptors by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. Citrus canker disease associated with Xanthomonas citri is one of the most important diseases damaging citrus production worldwide. In this study, we cloned the FLS2 gene from Nicotiana benthamiana cDNA and inserted it into the binary vector pBinPlus/ARS to transform Hamlin sweet orange and Carrizo citrange. Transgene presence was confirmed by polymerase chain reaction (PCR) and gene expression of NbFLS2 was compared by reverse transcription quantitative PCR. Reactive oxygen species (ROS) production in response to flg22Xcc was detected in transgenic Hamlin but not in nontransformed controls. Low or no ROS production was detected from nontransformed Hamlin seedlings challenged with flg22Xcc. Transgenic plants highly expressing NbFLS2 were selected and were evaluated for resistance to canker incited by X. citri 3213. Our results showed that the integration and expression of the NbFLS2 gene in citrus can increase canker resistance and defense-associated gene expression when challenged with X. citri. These results suggest that canker-susceptible Citrus genotypes lack strong basal defense induced by X. citri flagellin and the resistance of these genotypes can be enhanced by transgenic expression of the flagellin receptor from a resistant species.


Assuntos
Citrus/genética , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Citrus/microbiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Predisposição Genética para Doença , Filogenia , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
20.
Plant Dis ; 100(9): 1858-1869, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30682983

RESUMO

Citrus huanglongbing (HLB) is a destructive disease with no known cure. To identify sources of HLB resistance in the subfamily Aurantioideae to which citrus belongs, we conducted a six-year field trial under natural disease challenge conditions in an HLB endemic region. The study included 65 Citrus accessions and 33 accessions belonging to 20 other closely related genera. For each accession, eight seedling trees were evaluated. Based on quantitative polymerase chain reaction analysis of the pathogen titers and disease symptoms, eight disease-response categories were identified. We report two immune, six resistant, and 14 tolerant accessions. Resistance and tolerance observed in different accessions may be attributed to a multitude of factors, including psyllid colonization ability, absence of pathogen multiplication, transient replication of the bacterium, lack of pathogen establishment in the plant, delayed infection, or recovery from infection. Most citrus cultivars were considered susceptible: 15 citrons, lemons, and limes retained leaves in spite of the disease status. Resistance and high levels of field tolerance were observed in many noncitrus genera. Disease resistance/tolerance was observed in Australian citrus relative genera Eremocitrus and Microcitrus, which are sexually compatible with citrus and may be useful in future breeding trials to impart HLB resistance to cultivated citrus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...