Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 33(11-12): 579-597, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435735

RESUMO

Dravet syndrome (DS) is a developmental and epileptic encephalopathy caused by monoallelic loss-of-function variants in the SCN1A gene. SCN1A encodes for the alpha subunit of the voltage-gated type I sodium channel (NaV1.1), the primary voltage-gated sodium channel responsible for generation of action potentials in GABAergic inhibitory interneurons. In these studies, we tested the efficacy of an adeno-associated virus serotype 9 (AAV9) SCN1A gene regulation therapy, AAV9-REGABA-eTFSCN1A, designed to target transgene expression to GABAergic inhibitory neurons and reduce off-target expression within excitatory cells, in the Scn1a+/- mouse model of DS. Biodistribution and preliminary safety were evaluated in nonhuman primates (NHPs). AAV9-REGABA-eTFSCN1A was engineered to upregulate SCN1A expression levels within GABAergic inhibitory interneurons to correct the underlying haploinsufficiency and circuit dysfunction. A single bilateral intracerebroventricular (ICV) injection of AAV9-REGABA-eTFSCN1A in Scn1a+/- postnatal day 1 mice led to increased SCN1A mRNA transcripts, specifically within GABAergic inhibitory interneurons, and NaV1.1 protein levels in the brain. This was associated with a significant decrease in the occurrence of spontaneous and hyperthermia-induced seizures, and prolonged survival for over a year. In NHPs, delivery of AAV9-REGABA-eTFSCN1A by unilateral ICV injection led to widespread vector biodistribution and transgene expression throughout the brain, including key structures involved in epilepsy and cognitive behaviors, such as hippocampus and cortex. AAV9-REGABA-eTFSCN1A was well tolerated, with no adverse events during administration, no detectable changes in clinical observations, no adverse findings in histopathology, and no dorsal root ganglion-related toxicity. Our results support the clinical development of AAV9-REGABA-eTFSCN1A (ETX101) as an effective and targeted disease-modifying approach to SCN1A+ DS.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Animais , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/terapia , Síndromes Epilépticas , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Primatas/metabolismo , Convulsões/genética , Convulsões/terapia , Espasmos Infantis , Distribuição Tecidual , Ácido gama-Aminobutírico/genética
2.
Nature ; 502(7470): 254-7, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24089205

RESUMO

The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient Atg5 or Atg3 null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet-Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.


Assuntos
Autofagia , Centríolos/metabolismo , Cílios/fisiologia , Proteínas/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Transporte Proteico , Proteínas/genética
3.
Aging (Albany NY) ; 4(7): 462-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22820736

RESUMO

The FoxO family of transcription factors plays an important role in longevity and tumor suppression by regulating the expression of a wide range of target genes. FoxO3 has recently been found to be associated with extreme longevity in humans and to regulate the homeostasis of adult stem cell pools in mammals, which may contribute to longevity. The activity of FoxO3 is controlled by a variety of post-translational modifications that have been proposed to form a 'code' affecting FoxO3 subcellular localization, DNA binding ability, protein-protein interactions and protein stability. Lysine methylation is a crucial post-translational modification on histones that regulates chromatin accessibility and is a key part of the 'histone code'. However, whether lysine methylation plays a role in modulating FoxO3 activity has never been examined. Here we show that the methyltransferase Set9 directly methylates FoxO3 in vitro and in cells. Using a combination of tandem mass spectrometry and methyl-specific antibodies, we find that Set9 methylates FoxO3 at a single residue, lysine 271, a site previously known to be deacetylated by Sirt1. Methylation of FoxO3 by Set9 decreases FoxO3 protein stability, while moderately increasing FoxO3 transcriptional activity. The modulation of FoxO3 stability and activity by methylation may be critical for fine-tuning cellular responses to stress stimuli, which may in turn affect FoxO3's ability to promote tumor suppression and longevity.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatina , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Humanos , Metilação , Dados de Sequência Molecular , Transcrição Gênica
4.
Mol Biol Cell ; 23(17): 3322-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22767577

RESUMO

Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Centriolar satellites are centrosome-associated structures, defined by the protein PCM1, that are implicated in centrosomal protein trafficking. We identify Cep72 as a PCM1-interacting protein required for recruitment of the ciliopathy-associated protein Cep290 to centriolar satellites. Loss of centriolar satellites by depletion of PCM1 causes relocalization of Cep72 and Cep290 from satellites to the centrosome, suggesting that their association with centriolar satellites normally restricts their centrosomal localization. We identify interactions between PCM1, Cep72, and Cep290 and find that disruption of centriolar satellites by overexpression of Cep72 results in specific aggregation of these proteins and the BBSome component BBS4. During ciliogenesis, BBS4 relocalizes from centriolar satellites to the primary cilium. This relocalization occurs normally in the absence of centriolar satellites (PCM1 depletion) but is impaired by depletion of Cep290 or Cep72, resulting in defective ciliary recruitment of the BBSome subunit BBS8. We propose that Cep290 and Cep72 in centriolar satellites regulate the ciliary localization of BBS4, which in turn affects assembly and recruitment of the BBSome. Finally, we show that loss of centriolar satellites in zebrafish leads to phenotypes consistent with cilium dysfunction and analogous to those observed in human ciliopathies.


Assuntos
Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Células 3T3 , Animais , Síndrome de Bardet-Biedl , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centríolos/genética , Centríolos/metabolismo , Centrossomo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Interferência de RNA , RNA Interferente Pequeno , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
Genes Dev ; 26(13): 1421-6, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751498

RESUMO

The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome.


Assuntos
Manchas Café com Leite/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurofibromatose 1/metabolismo , Neurofibromina 1/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Manchas Café com Leite/genética , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Camundongos , Neurofibromatose 1/genética , Neurofibromina 1/genética , Ligação Proteica , Proteínas Repressoras/genética
6.
PLoS One ; 7(12): e52166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300604

RESUMO

Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.


Assuntos
Biomarcadores/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Doenças Genéticas Inatas , Traqueia/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais/citologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Fatores de Transcrição Forkhead/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Traqueia/citologia , Ativação Transcricional
7.
Hum Gene Ther ; 21(10): 1287-97, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20497035

RESUMO

The ΦC31 integrase system provides genomic integration of plasmid DNA that may be useful in gene therapy. For example, the ΦC31 system has been used in combination with hydrodynamic injection to achieve long-term expression of factor IX in mouse liver. However, a concern is that prolonged expression of ΦC31 integrase within cells could potentially stimulate chromosome rearrangements or an immune response. Western blot and immunofluorescence analyses were performed to investigate the duration of ΦC31 integrase expression in mouse liver. Integrase was expressed within 2 to 3 hr after hydrodynamic injection of a plasmid expressing ΦC31 integrase. Expression peaked between 8 and 16 hr and fell to background levels by 24-48 hr postinjection. Analysis of the amount of integrase plasmid DNA present in the liver over time suggested that the brief period of integrase expression could largely be accounted for by rapid loss of the bulk of the plasmid DNA, as well as by silencing of plasmid expression. PCR analysis of integration indicated that ΦC31 integrase carried out genomic integration of a codelivered attB-containing plasmid by 3 hr after plasmid injection. Integrase was expressed for longer times and at higher levels in transfected cultured cells compared with liver. Inhibitor studies suggested that the enzyme had a short half-life and was degraded by the 26S proteasome. The short duration of integrase expression in liver and rapid integration reaction appear to be features favorable for use in gene therapy.


Assuntos
Integrases/genética , Integrases/metabolismo , Fígado/enzimologia , Plasmídeos , Transfecção , Animais , Sítios de Ligação Microbiológicos/genética , Southern Blotting , Western Blotting , Linhagem Celular , Imunofluorescência , Expressão Gênica , Inativação Gênica , Terapia Genética , Vetores Genéticos , Células HeLa , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Recombinação Genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...