Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600206

RESUMO

By X-ray diffraction analysis and IR spectroscopy, it was established here that vinyl carbocations C3H5+/C4H7+ with carborane counterion CHB11Cl11- form stable monosolvates C3H5+⋅C3H6/C4H7+⋅C4H8 with molecules of alkenes C3H6/C4H8. They contain molecular group =C+⋯Hδ--Cδ+= with a new type of bond formed by the H atom of the H-C= group of the alkene with the C atom of the C+=C group of the carbocation. The short C+----Cδ+ distance, equal to 2.44 Å, is typical of that of X----X in proton disolvates (L2H+) with an quasi-symmetrical X-H+⋯X moiety (where X = O or N) of basic molecule L. The nature of the discovered bond differs from that of the classic H-bond by an distribution of electron density: the electron-excessive Hδ- atom from the (=)C-H group of the alkene is attached to the C+ atom of the carbocation, on which the positive charge is predominantly concentrated. Therefore, it can be called an inverse hydrogen bond.

2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445912

RESUMO

Introduction of Cl and O atoms into C4-vinyl carbocations was studied by X-ray diffraction analysis and IR spectroscopy. Chlorine atoms are weak electron acceptors in ordinary molecules but, within vinyl carbocations, manifest themselves as strong electron donors that accept a positive charge. The attachment of a Cl atom directly to a C=C bond leads to an increase in the e-density on it, exceeding that of the common double bond. The positive charge should be concentrated on the Cl atom, and weak δ- may appear on the C=C bond. More distant attachment of the Cl atom, e.g., to a C atom adjacent to the C=C bond, has a weaker effect on it. If two Cl atoms are attached to the Cγ atom of the vinyl cation, as in Cl2CγCδHCαHCH3, then the cation switches to the allyl type with two practically equivalent and almost uncharged CγCδCα bonds. When such a strong nucleophile as the O atom is introduced into the carbocation, a protonated ester molecule with a C-O(H+)-C group and a C=C bond forms. Nonetheless, in the future, there is still a possibility of obtaining carbocations with a non-protonated C-O-C group.


Assuntos
Cloro , Cloro/química , Cátions/química
3.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770812

RESUMO

X-ray diffraction analysis and IR spectroscopy were used to study the products of the interaction of vinyl cations C3H5+ and C4H7+ (Cat+) (as salts of carborane anion CHB11Cl11-) with basic molecules of water, alcohols, and acetone that can crystallize from solutions in dichloromethane and C6HF5. Interaction with water, as content increased, proceeded via three-stages. (1) adduct Cat+·OH2 forms in which H2O binds (through the O atom) to the C=C+ bond of the cation with the same strength as seen in the binding to Na in Na(H2O)6+. (2) H+ is transferred from cation Cat+·OH2 to a water molecule forming H3O+ and alcohol molecules (L) having the CH=CHOH entity. The O- atom of alcohols is attached to the H atom of the C=C+-H moiety of Cat+ thereby forming a very strong asymmetric H-bond, (C=)C+-H⋅⋅⋅O. (3) Finally all vinyl cations are converted into alcohol molecule L and H3O+ cations, yielding proton disolvates L-H+-L with a symmetric very strong H-bond. When an acetone molecule (Ac) interacts with Cat+, H+ is transferred to Ac giving rise to a reactive carbene and proton disolvate Ac-H+-Ac. Thus, the alleged high reactivity of vinyl cations seems to be an exaggeration.

4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675316

RESUMO

It was found that alkyl carbocations, when their salts are dissolved in common organochlorine solvents, decompose to unsaturated vinyl-type carbocations that are stabler in solutions. This is a convenient method for obtaining salts of vinyl cations and their solutions for further research.


Assuntos
Sais , Cátions , Solventes
5.
ACS Omega ; 7(31): 27560-27572, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967019

RESUMO

The butylene carbocation in its salts with anions CHB11F11 - and CHB11Cl11 - forms isomers CH2=C+-CH2-CH3 (I) and CH3-C+=CH-CH3 (II), which were characterized here by infrared (IR) spectroscopy and X-ray diffraction analysis. The strongest influence on the structure of the cations is exerted by geometric ordering of their anionic environment. In the crystalline phase, the cations uniformly interact with neighboring anions, and the C=C bond is located in the middle part of the cations forming a -CH=C+- moiety with the highest positive charge on it and the lowest νC=C frequency, at 1490 cm-1. In the amorphous phase with a disordered anionic environment of the cations, contact ion pairs Anion-···CH2=C+-CH2-CH3 form predominantly, with terminal localization of the C=C bond through which the contact occurs. The positive charge is slightly extinguished by the anion, and the C=C stretch frequency is higher by ∼100 cm-1. The replacement of the hydrogen atom in cations I/II by a Cl atom giving rise to cations CH2=C+-CHCl-CH3 and CH3-C+=CCl-CH3 means that the donation of electron density from the Cl atom quenches the positive charge on the C+=C bond more strongly, and the C=C stretch frequency increases so much that it even exceeds that of neutral alkene analogues by 35-65 cm-1. An explanation is given for the finding that upon stabilization of the vinyl cations by polyatomic substituents such as silylium (SiMe3) and t-Bu groups, the stretching C=C frequency approaches the triple-bond frequency. Namely, the scattering of a positive charge on these substituents enhances their donor properties so much that the electron density on the C=C bond with a weakened charge becomes much higher than that of neutral alkenes.

6.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012378

RESUMO

Solid salts of the divinyl chloronium (C2H3)2Cl+ cation (I) and unsaturated C4H6Cl+ and C4H7+ carbocations with the highly stable CHB11Hal11- anion (Hal=F, Cl) were obtained for the first time. At 120 °C, the salt of the chloronium cation decomposes, yielding a salt of the C4H5+ cation. This thermally stable (up to 200 °C) carbocation is methyl propargyl, CH≡C-C+-H-CH3 (VI), which, according to quantum chemical calculations, should be energetically much less favorable than other isomers of the C4H7+ cations. Cation VI readily attaches HCl to the formal triple C≡C bond to form the CHCl=CH-C+H-CH3 cation (VII). In infrared spectra of cations I, VI, and VII, frequencies of C=C and C≡C stretches are significantly lower than those predicted by calculations (by 400-500 cm-1). Infrared and 1H/13C magic-angle spinning NMR spectra of solid salts of cations I and VI and high-resolution 1H/13C NMR spectra of VII in solution in SO2ClF were interpreted. On the basis of the spectroscopic data, the charge and electron density distribution in the cations are discussed.


Assuntos
Imageamento por Ressonância Magnética , Sais , Cátions/química , Espectroscopia de Ressonância Magnética/métodos , Sais/química , Espectrofotometria Infravermelho
7.
ACS Omega ; 6(37): 23691-23699, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568649

RESUMO

Three isomers of the allyl cation C3H5 + were obtained in salts with the carborane anion CHB11Cl11 -. Two of them, angular CH3-CH=CH+ (I) and linear CH3-C+=CH2 (II), were characterized by X-ray crystallography, and the third one, (CH2CHCH2)+ (III), is formed in an amorphous salt. The stretch vibration of the charged double bond C=C+ of I and II is decreased by 162 cm-1 (I) or 76 cm-1 (II) as compared to that of neutral propene. This result contradicts the prediction of DFT and MP2 calculations with the 6-311G++(d,p) basis set that the appearance of the positive charge on the C=C bond should increase its stretch vibration by 200 cm-1 (I) or 210 cm-1 (II). According to infrared spectra, the CC bonds in isomer III have one-and-a-half bond status. Isomers I and II in the crystal lattice are stabilized due to uniform ionic interactions with neighboring anions with partial transfer of a positive charge to them. Additional stabilization of II is provided by a weak hyperconjugation effect. Isomer III is stabilized in the amorphous phase due to ion paring with a counterion and a strong intramolecular hyperconjugation effect.

8.
ACS Omega ; 6(24): 15834-15843, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179627

RESUMO

The isobutylene carbocation (CH3)2C=CH+ was obtained in amorphous and crystalline salts with the carborane anion CHB11Cl11 -. The cation was characterized by X-ray crystallography and IR spectroscopy. Its crystal structure shows a relatively uniform ionic interaction of the cation with the surrounding anions, with a slightly shortened distance between the C atom of the =CH group and the Cl atom of the anion, pointing to a higher positive charge on this group. In the amorphous phase, the asymmetric interaction of the cation with the anion increases, approaching ion pairing. This gives rise to a strong hyperconjugation between the two CH3 groups and the 2pz orbital of the central carbon sp2 atom (the red shift of the CH stretch is 150 cm-1); this effect stabilizes the cation. Over time, as the structure of the amorphous phase becomes more ordered, the hyperconjugation weakens and disappears in the crystalline phase with the disappearance of ion pairing. The carbocation stabilization in the crystalline phase is achieved due to the transfer of a portion of the charge to the neighboring anions, whereas the charge on the C=C bond becomes the strongest: the C=C stretch frequency drops to ∼160 cm-1 relative to neutral isobutylene. The collected IR spectra for the optimized cation under vacuum (in the 6-311G ++ (d, p) basis for all HF, MP2, and DFT calculations) predict that a positive charge on the C=C bond increases its stretching frequency; this computational result contradicts the experimental data, perhaps because it does not take into account the significant impact of the environment.

9.
Angew Chem Int Ed Engl ; 57(17): 4516-4520, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29457679

RESUMO

An experimental study on protonation of simple weakly basic molecules (L) by the strongest solid superacid, H(CHB11 F11 ), showed that basicity of SO2 is high enough (during attachment to the acidic H atoms at partial pressure of 1 atm) to break the bridged H-bonds of the polymeric acid and to form a mixture of solid mono- LH+ ⋅⋅⋅An- , and disolvates, L-H+ -L. With a decrease in the basicity of L=CO (via C), N2 O, and CO (via O), only proton monosolvates are formed, which approach L-H+ -An- species with convergence of the strengths of bridged H-bonds. The molecules with the weakest basicity, such as CO2 and weaker, when attached to the proton, cannot break the bridged H-bond of the polymeric superacid, and the interaction stops at stage of physical adsorption. It is shown here that under the conditions of acid monomerization, it is possible to protonate such weak bases as CO2 , N2 , and Xe.

10.
Phys Chem Chem Phys ; 19(48): 32733-32740, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29199288

RESUMO

Adsorption of gaseous N2O on the acidic surface Brønsted centers of the strongest known solid acid, H(CHB11F11), results in formation of the N≡N-OH+ cation. Its positive charge is localized mainly to the H-atom, which is H-bonded to the CHB11F11- anion forming an asymmetric proton disolvate of the L1-H+L2 type, where L1 = N2O and L2 = CHB11F11-. NO2 protonation under the same conditions leads to the formation of the highly reactive cation radical NO2H˙+, which reacts rapidly with an NO2 molecule according to the equation N2OH+ + NO2 → [N2O4H+] → N2OH+ + O2 resulting in the formation of two types of N2OH+ cations: (i) a typical Brønsted superacid, N[triple bond, length as m-dash]N-OH+, with a strongly acidic OH group involved in a rather strong H-bond with the anion, and (ii) a typical strong Lewis acid, N[triple bond, length as m-dash]N+-OH, with a positive charge localized to the central N atom and ionic interactions with the surrounding anions via the charged central N atom.

11.
J Phys Chem A ; 121(50): 9638-9644, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29220179

RESUMO

Based on the experimentally established mechanism of hyperconjugative stabilization of the simplest saturated carbocations [Stoyanov, E. S.; et al. PCCP, 2017, 19, 7270], the infrared spectra of t-alkyl+ and methyl-cyclo-pentyl+ carbocations were interpreted. This approach allows us to extract new information about the electronic state of (CH3)2C+R cations with R = H, CH3, C2H5, C4H7, and CH(CH3)2, namely, the electron density distribution over the (CH3)2C group and the positive charge dispersion on the H atoms of this group. Thus, donation of the electron density to the empty 2pz orbital of the sp2 C atom occurs not only from one C-H bond oriented parallel to the 2pz orbital but also equally from all other C-H and C-C bonds of the molecular group involved in hyperconjugation. This mechanism preserved the isoelectronic nature of this group toward the corresponding groups of the neutral alkanes. Hyperconjugation and polarization are closely linked in stabilization of carbocations: the strengthening of one effect weakens the second and vice versa without changing the efficiency of scattering of the positive charge in the carbocation. In the condensed phase, carbocations are additionally stabilized by the bulk effect and hydrogen bonding with the environment: increasing H-bonding strength increased hyperconjugation and decreased polarization. The contribution of all the effects on the stabilization of carbocations was evaluated.

12.
J Phys Chem A ; 121(15): 2918-2923, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28355067

RESUMO

Chloronium cations in their salts (CnH2n+1)2Cl+{CHB11Cl11-}, with n = 1 to 3 and exceptionally stable carborane anions, are stable at ambient and elevated temperatures. The temperature at which they decompose to carbocations with HCl elimination (below 150 °C) decreases with the increasing n from 1 to 3 because of increasing ionicity of C-Cl bonds in the C-Cl+-C bridge. At room temperature, the salts of cations with n ≥ 4 [starting from t-Bu2Cl+ or (cyclo-C5H11)2Cl+] are unstable and decompose. With decreasing chloronium ion stability, their ability to interact with chloroalkanes to form oligomeric cations increases. It was shown indirectly that unstable salt of fluoronium ions (CH3)2F+(CHB11F11-) must exist at low temperatures. The proposed (CH3)2F+ cation is much more reactive than the corresponding chloronium, showing at room temperature chemical properties expected of (CH3)2Cl+ at elevated temperatures.

13.
Phys Chem Chem Phys ; 19(10): 7270-7279, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28239699

RESUMO

Comparison of experimental infrared (IR) spectra of the simplest carbocations (with the weakest carborane counterions in terms of basicity, CHB11Hal11-, Hal = F, Cl) with their calculated IR spectra revealed that they are completely inconsistent, as previously reported for the t-Bu+ cation [Stoyanov E. S., et al. J. Phys. Chem. A, 2015, 119, 8619]. This means that the generally accepted explanation of hyperconjugative stabilization of the carbocations should be revised. According to the theory, one CH bond (denoted as ) from each CH3/CH2 group transfers its σ-electron density to the empty 2pz orbital of the sp2 C atom, whereas the σ-electron density on the other CH bonds of the CH3/CH2 group slightly increases. From experimental IR spectra it follows that donation of the σ-electrons from the bond to the 2pz C-orbital is accompanied by equal withdrawal of the electron density from other CH bonds, that is, the electrons are supplied from each CH bond of the CH3/CH2 group. As a result, all CH stretches of the group are red shifted, and IR spectra show typical CH3/CH2 group vibrations. Experimental findings provided another clue to the electron distribution in the hydrocarbon cations and showed that the standard computational techniques do not allow researchers to explain a number of recently established features of the molecular state of hydrocarbon cations.

14.
Phys Chem Chem Phys ; 18(18): 12896-904, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27104946

RESUMO

The interaction of CH3Cl/CD3Cl or CH2Cl2/CD2Cl2 with the carborane acid H(CHB11Cl11) (abbreviated as H{Cl11}) generates the salts of CH3-{Cl11} and CH2Cl-{Cl11} and their deuterio analogs, respectively, which are analogs of the salts of asymmetric chloronium cations. Next, salts of chloronium cations CH3-Cl(+)-CH3, ClCH2-Cl(+)-CH2Cl, and ClCH2-Cl(+)-CH3 and their deuterio analogs were obtained from the above compounds. The asymmetric ClCH2-Cl(+)-CH3 cation was found to be unstable, and at ambient temperature, slowly disproportionated into symmetric cations (CH3)2Cl(+) and (CH2Cl)2Cl(+). At a high temperature (150 °C), disproportionation was completed within 5 minutes, and the resulting cations further decomposed into CH3-{Cl11} and CH2Cl-{Cl11}. The molecular fragment ClCH2-(X) of the compounds (X = {Cl11}, -Cl(+)-CH2Cl, or -Cl(+)-CH3) is involved in exchange reactions with CH2Cl2 and CHCl3, converting into CH3-(X) with the formation of chloroform and CCl4, respectively.

15.
Phys Chem Chem Phys ; 18(6): 4871-80, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26805010

RESUMO

Using infrared (IR) spectroscopy and density functional theory (DFT) calculations, interaction of CO with the strongest known pure Brønsted carborane superacids, H(CHB11Hal11) (Hal = F, Cl), was studied. CO readily interacted at room temperature with H(CHB11F11) acid, forming a mixture of bulk salts of formyl and isoformyl cations, which were in equilibrium An(-)H(+)CO COH(+)An(-). The bonding of CO to the surface Brønsted centers of the weaker acid, H(CHB11Cl11), resulted in breaking of the bridged H-bonds of the acid polymers without proton transfer (PT) to CO. The binding occurred via the C atom (blue shift ΔνCO up to +155-167 cm(-1), without PT) or via O atom (red shift ΔνCO up to -110 cm(-1), without PT) always simultaneously, regardless of whether H(+) is transferred to CO. IR spectra of all species were interpreted by B3LYP/cc-pVQZ calculations of the simple models, which adequately mimic the ability of carborane acids to form LH(+)CO, LH(+)CO, COH(+)L, and COH(+)L compounds (L = bases). The CO bond in all compounds was triple. Acidic strength of the Brønsted centers of commonly used acid catalysts, even so-called superacidic catalysts, is not sufficient for the formation of the compounds studied.

16.
J Phys Chem A ; 119(32): 8619-29, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26172244

RESUMO

Despite the seeming similarity of the infrared (IR) spectra between tert-butyl cations (t-Bu(+)) in gaseous and condensed phases, there are important but so far unrecognized differences. The IR spectroscopic investigation of the hydrogen (H)-bonding of t-Bu(+) with the immediate environment together with the X-ray crystallographic data shows that one CH3 group of t-Bu(+) differs from the other two. In the Ar-tagged t-Bu(+) in vacuum, this group is predominantly polarized, showing three C-H stretch vibrations at 2913, 2965, and 3036 cm(-1) whereas the other two methyls are predominantly involved in strong hyperconjugation, yielding an intense triple IR band with a maximum at 2839 cm(-1). In a condensed phase, the bulk solvent effect promoted participation of the polarized CH3 group in additional hyperconjugation, decreasing its νCH3 frequencies by approximately 120 cm(-1), whereas frequencies of the other CH3 groups decreased by only ca. 4-10 cm(-1). This observation indicates that the influence of the condensed phase on t-Bu(+) stabilization is substantial. Thus, enhancement of H-bonding between t-Bu(+) and Anion(-) strengthens hyperconjugation and promotes further cation stabilization.

17.
Angew Chem Int Ed Engl ; 53(4): 1131-4, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24339386

RESUMO

What is the strongest acid? Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature? Can that acid be free of the complicating effects of added Lewis acids that are typical of common, difficult-to-handle superacid mixtures? The carborane superacid H(CHB11 F11 ) is that acid. It is an extremely moisture-sensitive solid, prepared by treatment of anhydrous HCl with [Et3 SiHSiEt3 ][CHB11 F11 ]. It adds H2 O to form [H3 O][CHB11 F11 ] and benzene to form the benzenium ion salt [C6 H7 ][CHB11 F11 ]. It reacts with butane to form a crystalline tBu(+) salt and with n-hexane to form an isolable hexyl carbocation salt. Carbocations, which are thus no longer transient intermediates, react with NaH either by hydride addition to re-form an alkane or by deprotonation to form an alkene and H2 . By protonating alkanes at room temperature, the reactivity of H(CHB11 F11 ) opens up new opportunities for the easier study of acid-catalyzed hydrocarbon reforming.

18.
Org Biomol Chem ; 11(23): 3797-802, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23632995

RESUMO

Hyperconjugative stabilization of positive charge in tertiary carbocations is the textbook explanation for their stability and low frequency νCH bands in their IR spectra have long been taken as confirming evidence. While this is substantiated in the gas phase by the very close match of the IR spectrum of argon-tagged t-butyl cation with that calculated under C(s) symmetry, the situation in condensed phases is much less clear. The congruence of νCH(max) of t-Bu(+) in superacid media (2830 cm(-1)) with that in the gas phase (2834 cm(-1)) has recently been shown to be accidental. Rather, νCH(max) varies considerably as a function of counterion in a manner that reveals the presence of significant C-H···anion hydrogen bonding. This paper addresses the question of the relative importance of hyperconjugation versus H-bonding. We show by assigning IR spectra in the νCH region to specific C-H bonds in t-butyl cation that the low frequency νCH(max) band in the IR spectrum of t-butyl cation, long taken as direct evidence for hyperconjugation, appears to be due mostly to H-bonding. The appearance of similar low frequency νCH bands in the IR spectra of secondary alkyl carboranes such as i-Pr(CHB11Cl11), which have predominant sp(3) centres rather than sp(2) centres (and are therefore less supportive of hyperconjugation), also suggests the dominance of H-bonding over hyperconjugation.


Assuntos
Carbono/química , Hidrocarbonetos/química , Butanos/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular
19.
Angew Chem Int Ed Engl ; 51(36): 9149-51, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22887067

RESUMO

Environmentally sensitive: A combination of C-H anion hydrogen bonding and hyperconjugative charge delocalization explains the sensitivity of the IR spectrum of the tert-butyl cation to its anion (see high-resolution X-ray structure with a CHB(11)Cl(11)(-) counterion). The νCH vibration of the cation scales linearly with the basicity of carborane anions on the νNH scale. The same also holds for the C(6)H(7)(+) benzenium ion.


Assuntos
Derivados de Benzeno/química , Butanos/química , Sais/química , Carbono/química , Cátions/química , Cristalografia por Raios X , Hidrogênio/química , Ligação de Hidrogênio , Conformação Molecular , Espectrofotometria Infravermelho
20.
J Am Chem Soc ; 134(1): 707-14, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22133059

RESUMO

Oxatriquinanes are tricyclic oxonium ions which are known to possess remarkable solvolytic stability compared to simple alkyl oxonium salts. Their rigid, hemispherical structure presents an oxygen at the apex of three fused five-membered rings. While trivalent oxygen species like these have been well described in the literature, the ability of oxygen to enter into a fourth covalent bonding relationship has been visited in theory and suggested by the outcome of certain reactions conducted in superacidic media, but has never been established by the characterization of a stable, persistent R(3)OH(2+) or R(4)O(2+) ion. In this study, the nucleophilicity of the oxatriquinane oxygen was evaluated first by a series of protonation studies using the Brønsted superacid H(CHB(11)Cl(11)) both in the solid state and in liquid HCl solution. The interaction of the oxatriquinane oxygen with a bridging carbocation was also examined. A strong case could be made for the occurrence of hydrogen bonding between H(CHB(11)Cl(11)) and oxatriquinane using IR spectroscopy. Under the most forcing protonation conditions, the oxatriquinane ring is cleaved to give a bridged, dicationic, protonated tetrahydrofuran-carbenium ion.


Assuntos
Oxigênio/química , Alquilação , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...