Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(25): 252502, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639781

RESUMO

In an experiment performed at Lawrence Berkeley National Laboratory's 88-inch cyclotron, the isotope ^{244}Md was produced in the ^{209}Bi(^{40}Ar,5n) reaction. Decay properties of ^{244}Md were measured at the focal plane of the Berkeley Gas-filled Separator, and the mass number assignment of A=244 was confirmed with the apparatus for the identification of nuclide A. The isotope ^{244}Md is reported to have one, possibly two, α-decaying states with α energies of 8.66(2) and 8.31(2) MeV and half-lives of 0.4_{-0.1}^{+0.4} and ∼6 s, respectively. Additionally, first evidence of the α decay of ^{236}Bk was observed and is reported.

2.
Phys Rev Lett ; 121(22): 222501, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547624

RESUMO

An experiment was performed at Lawrence Berkeley National Laboratory's 88-in. Cyclotron to determine the mass number of a superheavy element. The measurement resulted in the observation of two α-decay chains, produced via the ^{243}Am(^{48}Ca,xn)^{291-x}Mc reaction, that were separated by mass-to-charge ratio (A/q) and identified by the combined BGS+FIONA apparatus. One event occurred at A/q=284 and was assigned to ^{284}Nh (Z=113), the α-decay daughter of ^{288}Mc (Z=115), while the second occurred at A/q=288 and was assigned to ^{288}Mc. This experiment represents the first direct measurements of the mass numbers of superheavy elements, confirming previous (indirect) mass-number assignments.

3.
Phys Rev Lett ; 109(16): 162501, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215070

RESUMO

Two years after the discovery of element 117, we undertook a second campaign using the (249)Bk+(48)Ca reaction for further investigations of the production and decay properties of the isotopes of element 117 on a larger number of events. The experiments were started in the end of April 2012 and are still under way. This Letter presents the results obtained in 1200 hours of an experimental run with the beam dose of (48)Ca of about 1.5×10(19) particles. The (249)Bk target was irradiated at two energies of (48)Ca that correspond to the maximum probability of the reaction channels with evaporation of three and four neutrons from the excited (297)117. In this experiment, two decay chains of (294)117 (3n) and five decay chains of (293)117 (4n) were detected. In the course of the long-term work, (249)Cf-the product of decay of (249)Bk (330 d)-is being accumulated in the target. Consequently, in the present experiment, we also detected a single decay of the known isotope (294)118 that was produced during 2002-2005 in the reaction (249)Cf((48)Ca,3n)(294)118. The obtained results are compared with the data from previous experiments. The experiments are carried out in the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, using the heavy-ion cyclotron U400.

4.
Rev Sci Instrum ; 83(2): 023505, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380089

RESUMO

Collection of representative samples of debris following inertial confinement fusion implosions in order to diagnose implosion conditions and efficacy is a challenging endeavor because of the unique conditions within the target chamber such as unconverted laser light, intense pulse of x-rays, physical chunks of debris, and other ablative effects. We present collection of gas samples following an implosion for the first time. High collection fractions for noble gases were achieved. We also present collection of solid debris samples on flat plate collectors. Geometrical collection efficiencies for Au hohlraum material were achieved and collection of capsule debris (Be and Cu) was also observed. Asymmetric debris distributions were observed for Au and Be samples. Collection of Be capsule debris was higher for solid collectors viewing the capsule through the laser entrance hole in the hohlraum than for solid collectors viewing the capsule around the waist of the hohlraum. Collection of Au hohlraum material showed the opposite pattern: more Au debris was collected around the waist than through the laser entrance hole. The solid debris collectors were not optimized for minimal Cu backgrounds, which limited the conclusions about the symmetry of the Cu debris. The quality of the data limited conclusions on chemical fractionation effects within the burning, expanding, and then cooling plasma.

5.
Phys Rev Lett ; 108(2): 022502, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324675

RESUMO

Results of a new series of experiments on the study of production cross sections and decay properties of the isotopes of element 115 in the reaction (243)Am+(48)Ca are presented. Twenty-one new decay chains originating from (288)115 were established as the product of the 3n-evaporation channel by measuring the excitation function at three excitation energies of the compound nucleus (291)115. The decay properties of all newly observed nuclei are in full agreement with those we measured in 2003. At the lowest excitation energy E*=33 MeV, for the first time we registered the product of the 2n-evaporation channel, (289)115, which was also observed previously in the reaction (249)Bk+(48)Ca as the daughter nucleus of the decay of (293)117. The maximum cross section for the production of (288)115 is found to be 8.5 pb at E*≈36 MeV.

6.
Phys Rev Lett ; 104(14): 142502, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481935

RESUMO

The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes (293)117 and (294)117 were produced in fusion reactions between (48)Ca and (249)Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z > or = 111, validating the concept of the long sought island of enhanced stability for superheavy nuclei.

7.
Rev Sci Instrum ; 79(10): 10E503, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044489

RESUMO

Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.

8.
Phys Rev Lett ; 85(14): 2945-8, 2000 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11005974

RESUMO

An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2). Up to 48 J ( 12%) of the laser energy is transferred to 2x10(13) protons of energy >10 MeV. The energy spectrum exhibits a sharp high-energy cutoff as high as 58 MeV on the axis of the beam which decreases in energy with increasing off axis angle. Proton induced nuclear processes have been observed and used to characterize the beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...