Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33972291

RESUMO

Synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by neuronal intracellular inclusions of α-synuclein. PD dementia (PDD) and DLB are collectively the second most common cause of neurodegenerative dementia. In addition to associated inclusions, Lewy body diseases (LBDs) have dopaminergic neurodegeneration, motor defects and cognitive changes. The microtubule-associated protein tau has been implicated in LBDs, but the exact role of the protein and how it influences formation of α-synuclein inclusions is unknown. Reducing endogenous tau levels is protective in multiple models of Alzheimer's disease (AD), tauopathies, and in some transgenic synucleinopathy mouse models. Recombinant α-synuclein and tau proteins interact in vitro Here, we show tau and α-synuclein colocalize at excitatory presynaptic terminals. However, tau heterozygous and tau knock-out mice do not show a reduction in fibril-induced α-synuclein inclusions formation in primary cortical neurons, or after intrastriatal injections of fibrils at 1.5 month or six months later. At six months following intrastriatal injections, wild-type, tau heterozygous and tau knock-out mice showed a 50% reduction in dopamine neurons in the substantia nigra pars compacta (SNc) compared with mice injected with α-synuclein monomer, but there were no statistically significant differences across genotypes. These data suggest the role of tau in the pathogenesis of LBDs is distinct from AD, and Lewy pathology formation may be independent of endogenous tau.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Neurônios Dopaminérgicos , Camundongos , Camundongos Transgênicos , alfa-Sinucleína/genética , Proteínas tau/genética
2.
Neurobiol Dis ; 134: 104708, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837424

RESUMO

Parkinson's disease (PD) is defined by motor symptoms such as tremor at rest, bradykinesia, postural instability, and stiffness. In addition to the classical motor defects that define PD, up to 80% of patients experience cognitive changes and psychiatric disturbances, referred to as PD dementia (PDD). Pathologically, PD is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein. Much of PD research has focused on the role of α-synuclein aggregates in degeneration of SNpc dopamine neurons because of the impact of loss of striatal dopamine on the classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the cortex and limbic brain regions such as the amygdala, which may contribute to non-motor phenotypes. Little is known about the consequences of α-synuclein inclusions in these brain regions, or in neuronal subtypes other than dopamine neurons. This project expands knowledge on how α-synuclein inclusions disrupt behavior, specifically non-motor symptoms of synucleinopathies. We show that bilateral injections of fibrils into the striatum results in robust bilateral α-synuclein inclusion formation in the cortex and amygdala. Inclusions in the amygdala and prefrontal cortex primarily localize to excitatory neurons, but unbiased stereology shows no significant loss of neurons in the amygdala or cortex. Fibril injected mice show defects in a social dominance behavioral task and fear conditioning, tasks that are associated with prefrontal cortex and amygdala function. Together, these observations suggest that seeded α-synuclein inclusion formation impairs behaviors associated with cortical and amygdala function, without causing cell loss, in brain areas that may play important roles in the complex cognitive features of PDD.


Assuntos
Tonsila do Cerebelo/patologia , Comportamento Animal/fisiologia , Córtex Cerebral/patologia , Corpos de Inclusão/patologia , alfa-Sinucleína/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/metabolismo , Condicionamento Clássico , Corpo Estriado/efeitos dos fármacos , Feminino , Corpos de Inclusão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Teste de Desempenho do Rota-Rod , alfa-Sinucleína/administração & dosagem
3.
J Neurochem ; 139 Suppl 1: 131-155, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27018978

RESUMO

Animal models of Parkinson's disease (PD) are important for understanding the mechanisms of the disease and can contribute to developing and validating novel therapeutics. Ideally, these models should replicate the cardinal features of PD, such as progressive neurodegeneration of catecholaminergic neurons and motor defects. Many current PD models emphasize pathological forms of α-synuclein, based on findings that autosomal dominant mutations in α-synuclein and duplications/triplications of the SNCA gene cause PD. In addition, Lewy bodies and Lewy neurites, primarily composed of α-synuclein, represent the predominant pathological characteristics of PD. These inclusions have defined features, such as insolubility in non-ionic detergent, hyperphosphorylation, proteinase K sensitivity, a filamentous appearance by electron microscopy, and ß-sheet structure. Furthermore, it has become clear that Lewy bodies and Lewy neurites are found throughout the peripheral and central nervous system, and could account not only for motor symptoms, but also for non-motor symptoms of the disease. The goal of this review is to describe two new α-synuclein-based models: the recombinant adeno-associated viral vector-α-synuclein model and the α-synuclein fibril model. An advantage of both models is that they do not require extensive crossbreeding of rodents transgenic for α-synuclein with other rodents transgenic for genes of interest to study the impact of such genes on PD-related pathology and phenotypes. In addition, abnormal α-synuclein can be expressed in brain regions relevant for disease. Here, we discuss the features of each model, how each model has contributed thus far to our understanding of PD, and the advantages and potential caveats of each model. This review describes two α-synuclein-based rodent models of Parkinson's disease: the rAAV-α-synuclein model and the α-synuclein fibril model. The key features of these models are described, and the extent to which they recapitulate features of PD, such as α-synuclein inclusion formation, loss of dopaminergic synapses in the striatum, motor defects, inflammation, and dopamine neuron death. This article is part of a special issue on Parkinson disease.


Assuntos
Amiloide/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Amiloide/metabolismo , Animais , Compreensão , Vetores Genéticos/administração & dosagem , Humanos , Doença de Parkinson/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...