Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36535574

RESUMO

In euryhaline fish, prolactin (Prl) plays a key role in freshwater acclimation. Prl release in the rostral pars distalis (RPD) of the pituitary is directly stimulated by a fall in extracellular osmolality. Recently, we identified several putative transcription factor modules (TFM) predicted to bind to the promoter regions of the two prl isoforms in Mozambique tilapia, Oreochromis mossambicus. We characterized the effects of extracellular osmolality on the activation of these TFMs from RPDs, in vivo and in vitro. OCT1_PIT1 01, CEBP_CEBP 01 and BRNF_RXRF 01 were significantly activated in freshwater (FW)- acclimated tilapia RPDs while SORY_PAX3 02 and SP1F_SP1F 06, SP1F_SP1F 09 were significantly activated in seawater (SW)- counterparts. Short-term incubation of SW- acclimated tilapia RPDs in hyposmotic media (280 mOsm/kg) resulted in activation of CAAT_AP1F 01, OCT1_CEBP 01, AP1F_SMAD 01, GATA_SP1F 01, SORY_PAX6 01 and CREB_EBOX 02, EBOX_AP2F 01, EBOX_MITF 01 while hyperosmotic media (420 mOsm/kg) activated SORY_PAX3 02 and AP1F_SMAD 01 in FW- tilapia. Short-term incubation of dispersed Prl cells from FW- acclimated fish exposed to hyperosmotic conditions decreased pou1f1, pou2f1b, stat3, stat1a and ap1b1 expression, while pou1f1, pou2f1b, and stat3 were inversely related to osmolality in their SW- counterparts. Further, in Prl cells of SW- tilapia, creb3l1 was suppressed in hyposmotic media. Collectively, our results indicate that multiple TFMs are involved in regulating prl transcription at different acclimation salinities and, together, they modulate responses of Prl cells to changes in extracellular osmolality. These responses reflect the complexity of osmosensitive molecular regulation of the osmoreceptive Prl cell of a euryhaline teleost.


Assuntos
Prolactina , Equilíbrio Hidroeletrolítico , Animais , Prolactina/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Fatores de Transcrição/metabolismo , Concentração Osmolar , Hipófise/metabolismo
2.
J Neuroendocrinol ; 32(11): e12905, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32996203

RESUMO

The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.


Assuntos
Regulação da Expressão Gênica/genética , Prolactina/genética , Tilápia/genética , Tilápia/metabolismo , Animais , Simulação por Computador , Lactotrofos , Modelos Genéticos , Osmorregulação , Prolactina/biossíntese , Regiões Promotoras Genéticas/genética , Transcriptoma
3.
Biochim Biophys Acta ; 1800(3): 416-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19913599

RESUMO

Selenoprotein H is a redox-sensing DNA binding protein that upregulates genes involved in antioxidant responses. Given the known links between oxidative stress and heavy metals, we investigated the potential for regulation of selenoprotein H by metals. In silico analysis of the selenoprotein H genes from nine species reveals multiple predicted metal response elements (MREs). To validate MRE function, we investigated the effects of zinc or cadmium addition and metal-responsive transcription factor 1 (MTF-1) knockout on selenoprotein H mRNA levels. Chromatin immunoprecipitation was used to directly assess physical binding of the transcription factor to MREs in the human and mouse selenoprotein H genes. The results reported herein show that selenoprotein H is a newly identified target for MTF-1. Further, whereas nearly all prior studies of MREs focused on those located in promoters, we demonstrate binding of MTF-1 to MREs located downstream of the transcription start sites in the human and murine selenoprotein H genes. Finally, we identified MREs in downstream sequences in 15 additional MTF-1 regulated genes lacking promoter MREs, and demonstrated MTF-1 binding in three of these genes. This regulation via sequences downstream of promoters highlights a new direction for identifying previously unrecognized target genes for MTF-1.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Selenoproteínas/genética , Fatores de Transcrição/fisiologia , Regulação para Cima , Âmnio/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Primers do DNA , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Humanos , Rim , Luciferases/genética , Macaca , Metais Pesados/toxicidade , Camundongos , Estresse Oxidativo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Selenoproteínas/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Transcrição Gênica , Fator MTF-1 de Transcrição
4.
Biochim Biophys Acta ; 1790(11): 1429-40, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19465084

RESUMO

BACKGROUND: Selenoproteins contain the twenty-first amino acid, selenocysteine, and are involved in cellular defenses against oxidative damage, important metabolic and developmental pathways, and responses to environmental challenges. Elucidating the mechanisms regulating selenoprotein expression at the transcriptional level is a key to understanding how these mechanisms are called into play to respond to the changing environment. METHODS: This review summarizes published studies on transcriptional regulation of selenoprotein genes, focused primarily on genes whose encoded protein functions are at least partially understood. This is followed by in silico analysis of predicted regulatory elements in selenoprotein genes, including those in the aforementioned category as well as the genes whose functions are not known. RESULTS: Our findings reveal regulatory pathways common to many selenoprotein genes, including several involved in stress-responses. In addition, tissue-specific regulatory factors are implicated in regulating many selenoprotein genes. CONCLUSIONS: These studies provide new insights into how selenoprotein genes respond to environmental and other challenges, and the roles these proteins play in allowing cells to adapt to these changes. GENERAL SIGNIFICANCE: Elucidating the regulatory mechanisms affecting selenoprotein expression is essential for understanding their roles in human diseases, and for developing diagnostic and potential therapeutic approaches to address dysregulation of members of this gene family.


Assuntos
Regulação da Expressão Gênica , Mamíferos/genética , Selenoproteínas/genética , Animais , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/fisiologia , Humanos , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/fisiologia , Mamíferos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxina Dissulfeto Redutase/fisiologia , Transcrição Gênica/fisiologia
5.
J Biol Chem ; 282(33): 23759-65, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17526492

RESUMO

Selenoprotein H is a recently identified member of the selenoprotein family whose function is not fully known. Previous studies from our laboratory and others showed that Drosophila melanogaster selenoprotein H is essential for viability and antioxidant defense. In this study we investigated the function of human selenoprotein H in murine hippocampal HT22 cells engineered to stably overexpress the protein. After treatment of cells with L-buthionine-(S,R)-sulfoximine to deplete glutathione, selenoprotein H-overexpressing cells exhibited higher levels of total glutathione, total antioxidant capacities, and glutathione peroxidase enzymatic activity than did vector control cells. Overexpression of selenoprotein H also up-regulated the mRNA levels of endogenous selenoprotein H, glutamylcysteine synthetase heavy and light chains, and glutathione S-transferases Alpha 2, Alpha 4, and Omega 1. The amino acid sequence of selenoprotein H contains four putative nuclear localization sequences and an AT-hook motif, a small DNA-binding domain first identified in high mobility group proteins. Chromatin immunoprecipitation using a green fluorescent protein-selenoprotein H fusion revealed binding to sequences containing heat shock and/or stress response elements. Thus, selenoprotein H is a redox-responsive DNA-binding protein of the AT-hook family and functions in regulating expression levels of genes involved in de novo glutathione synthesis and phase II detoxification in response to redox status.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Enzimológica da Expressão Gênica , Glutationa/biossíntese , Desintoxicação Metabólica Fase II/genética , Selenoproteínas/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Grupo de Alta Mobilidade , Hipocampo/citologia , Humanos , Camundongos , Oxirredução , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA