Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281527

RESUMO

The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.


Assuntos
Doenças Transmitidas por Alimentos , Eliminação de Resíduos , Humanos , Perda e Desperdício de Alimentos , Alimentos , Embalagem de Medicamentos , Embalagem de Alimentos
2.
Food Chem X ; 18: 100646, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37008722

RESUMO

The possibility of replacing the very time and resource demanding salting out (SO) method with isoelectric precipitation (IP) during collagen extraction from common starfish and lumpfish was investigated. The effect of IP on yield, structural and functional properties of the collagens was therefore compared with SO. Application of IP resulted in a higher or similar collagen mass yield compared with SO from starfish and lumpfish, respectively. However, the purity of collagens recovered with IP was lower than those recovered with SO. Replacing SO with IP did not affect polypeptide pattern and tropohelical structural integrity of collagen from the two resources as revealed with SDS-PAGE and FTIR analysis. Thermal stability and fibril formation capacity of collagens recovered with IP were also well preserved. Overall, the results showed that the IP can be a promising resource smart alternative for the classic SO precipitation during collagen extraction from marine resources.

3.
Langmuir ; 34(25): 7272-7283, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29856628

RESUMO

The synthesis of graphitic carbon nitride (g-C3N4) doped with s-block metals is described. The materials were synthesized via thermal polycondensation of cyanamide and the appropriate metal chloride. The inclusion of the metal precursor strongly influenced the surface chemistry features as well as the textural, morphological, and structural properties of the g-C3N4. The doping of g-C3N4with s-block metals markedly enhanced its adsorption performance, which was studied during the removal of two model solutes (methyl blue and copper ions) from aqueous solutions. The maximum adsorption capacity for the organic dye was increased by 680 times after the doping process. The uptake of copper(II) increased ca. 30 times for the doped g-C3N4. The improvement of the adsorption performance is discussed in terms of the surface chemistry and textural features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...