Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 129(20): 3803-3815, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591256

RESUMO

Lipid droplets are found in most organisms where they serve to store energy in the form of neutral lipids. They are formed at the endoplasmic reticulum (ER) membrane where the neutral-lipid-synthesizing enzymes are located. Recent results indicate that lipid droplets remain functionally connected to the ER membrane in yeast and mammalian cells to allow the exchange of both lipids and integral membrane proteins between the two compartments. The precise nature of the interface between the ER membrane and lipid droplets, however, is still ill-defined. Here, we probe the topology of lipid droplet biogenesis by artificially targeting proteins that have high affinity for lipid droplets to inside the luminal compartment of the ER. Unexpectedly, these proteins still localize to lipid droplets in both yeast and mammalian cells, indicating that lipid droplets are accessible from within the ER lumen. These data are consistent with a model in which lipid droplets form a specialized domain in the ER membrane that is accessible from both the cytosolic and the ER luminal side.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas/metabolismo , Animais , Biomarcadores/metabolismo , Citosol/metabolismo , Endopeptidase K/metabolismo , Retículo Endoplasmático/ultraestrutura , Genes Reporter , Glicosilação , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Gotículas Lipídicas/ultraestrutura , Mamíferos/metabolismo , Modelos Biológicos , Perilipina-1/metabolismo , Sinais Direcionadores de Proteínas , Proteólise , Saccharomyces cerevisiae/metabolismo
2.
FASEB J ; 30(5): 1941-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26887443

RESUMO

The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane ß-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-ß indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Spacek, T., Dlasková, A., Smolková, K., Spacková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Jezek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.


Assuntos
Complexos de ATP Sintetase/metabolismo , Adaptação Fisiológica/fisiologia , Trifosfato de Adenosina/biossíntese , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Oxigênio , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Complexos Multiproteicos/fisiologia , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas
3.
PLoS One ; 10(3): e0122770, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811606

RESUMO

Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC) - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies), or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.


Assuntos
Membrana Celular/metabolismo , Exorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Exorribonucleases/genética , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Resposta ao Choque Térmico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Eur J Cell Biol ; 94(1): 1-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25457676

RESUMO

Eisosomes are plasma membrane-associated protein complexes organizing the membrane compartment of Can1 (MCC), a membrane microdomain of specific structure and function in ascomycetous fungi. By heterologous expression of specific components of Schizosaccharomyces pombe eisosomes in Saccharomyces cerevisiae we reconstitute structures exhibiting the composition and morphology of S. pombe eisosome in the host plasma membrane. We show S. pombe protein Pil1 (SpPil1) to substitute the function of its S. cerevisiae homologue in building plasma membrane-associated assemblies recognized by inherent MCC/eisosome constituents Sur7 and Seg1. Our data indicate that binding of SpPil1 to the plasma membrane of S. cerevisiae also induces formation of furrow-like invaginations characteristic for MCC. To the best of our knowledge, this is the first report of interspecies transfer of a functional plasma membrane microdomain. In the described system, we identify a striking difference between eisosome stabilizer proteins Seg1 and SpSle1. While Seg1 recruits both Pil1 and SpPil1 to the plasma membrane, SpSle1 recognizes only its natural counterpart, SpPil1. In the presence of Pil1, SpSle1 is segregated outside the Pil1-organized eisosomes and forms independent microdomains in the host membrane.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Fosfoproteínas/metabolismo
5.
PLoS One ; 8(10): e77791, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204967

RESUMO

As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Endopeptidases/metabolismo , Resposta ao Choque Térmico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Endopeptidases/genética , Temperatura Alta , Microscopia Eletrônica , Microscopia de Fluorescência , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteína com Valosina
6.
Traffic ; 14(2): 176-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23121014

RESUMO

The protein Isw1 of Saccharomyces cerevisiae is an imitation-switch chromatin-remodeling factor. We studied the mechanisms of its nuclear import and found that the nuclear localization signal (NLS) mediating the transport of Isw1 into the nucleus is located at the end of the C-terminus of the protein (aa1079-1105). We show that it is an atypical bipartite signal with an unconventional linker of 19 aa (KRIR X(19) KKAK) and the only nuclear targeting signal within the Isw1 molecule. The efficiency of Isw1 nuclear import was found to be modulated by changes to the amino acid composition in the vicinity of the KRIR motif, but not by the linker length. Live-cell imaging of various karyopherin mutants and in vitro binding assays of Isw1NLS to importin-α revealed that the nuclear translocation of Isw1 is mediated by the classical import pathway. Analogous motifs to Isw1NLS are highly conserved in Isw1 homologues of other yeast species, and putative bipartite cNLS were identified in silico at the end of the C-termini of imitation switch (ISWI) proteins from higher eukaryotes. We suggest that the C-termini of the ISWI family proteins play an important role in their nuclear import.


Assuntos
Adenosina Trifosfatases/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sinais de Localização Nuclear , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Mutação , Sinais de Localização Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS One ; 7(4): e35132, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496901

RESUMO

In many eukaryotes, a significant part of the plasma membrane is closely associated with the dynamic meshwork of cortical endoplasmic reticulum (cortical ER). We mapped temporal variations in the local coverage of the yeast plasma membrane with cortical ER pattern and identified micron-sized plasma membrane domains clearly different in cortical ER persistence. We show that clathrin-mediated endocytosis is initiated outside the cortical ER-covered plasma membrane zones. These cortical ER-covered zones are highly dynamic but do not overlap with the immobile and also endocytosis-inactive membrane compartment of Can1 (MCC) and the subjacent eisosomes. The eisosomal component Pil1 is shown to regulate the distribution of cortical ER and thus the accessibility of the plasma membrane for endocytosis.


Assuntos
Membrana Celular/fisiologia , Endocitose , Retículo Endoplasmático/fisiologia , Saccharomyces cerevisiae/fisiologia , Clatrina/fisiologia , Fosfoproteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
8.
Eukaryot Cell ; 9(8): 1184-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581291

RESUMO

The plasma membrane of the yeast Saccharomyces cerevisiae contains stably distributed lateral domains of specific composition and structure, termed MCC (membrane compartment of arginine permease Can1). Accumulation of Can1 and other specific proton symporters within MCC is known to regulate the turnover of these transporters and is controlled by the presence of another MCC protein, Nce102. We show that in an NCE102 deletion strain the function of Nce102 in directing the specific permeases into MCC can be complemented by overexpression of the NCE102 close homolog FHN1 (the previously uncharacterized YGR131W) as well as by distant Schizosaccharomyces pombe homolog fhn1 (SPBC1685.13). We conclude that this mechanism of plasma membrane organization is conserved through the phylum Ascomycota. We used a hemagglutinin (HA)/Suc2/His4C reporter to determine the membrane topology of Nce102. In contrast to predictions, its N and C termini are oriented toward the cytosol. Deletion of the C terminus or even of its last 6 amino acids does not disturb protein trafficking, but it seriously affects the formation of MCC. We show that the C-terminal part of the Nce102 protein is necessary for localization of both Nce102 itself and Can1 to MCC and also for the formation of furrow-like membrane invaginations, the characteristic ultrastructural feature of MCC domains.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Microdomínios da Membrana/ultraestrutura , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
9.
J Cell Sci ; 122(Pt 16): 2887-94, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19638406

RESUMO

Plasma membrane of the yeast Saccharomyces cerevisiae contains stable lateral domains. We have investigated the ultrastructure of one type of domain, the membrane compartment of Can1 (MCC). In two yeast strains (nce102Delta and pil1Delta) that are defective in segregation of MCC-specific proteins, we found the plasma membrane to be devoid of the characteristic furrow-like invaginations. These are highly conserved plasma membrane structures reported in early freeze-fracture studies. Comparison of the results obtained by three different approaches - electron microscopy of freeze-etched cells, confocal microscopy of intact cells and computer simulation - shows that the number of invaginations corresponds to the number of MCC patches in the membrane of wild-type cells. In addition, neither MCC patches nor the furrow-like invaginations colocalized with the cortical ER. In mutants exhibiting elongated MCC patches, there are elongated invaginations of the appropriate size and frequency. Using various approaches of immunoelectron microscopy, the MCC protein Sur7, as well as the eisosome marker Pil1, have been detected at these invaginations. Thus, we identify the MCC patch, which is a lateral membrane domain of specific composition and function, with a specific structure in the yeast plasma membrane - the furrow-like invagination.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Compartimento Celular , Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Simulação por Computador , Retículo Endoplasmático/ultraestrutura , Mutação/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Propriedades de Superfície , Inclusão do Tecido
10.
Histochem Cell Biol ; 130(5): 1047-52, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18797913

RESUMO

A protocol for high-pressure freezing and LR White embedding of mammalian cells suitable for fine ultrastructural studies in combination with immunogold labelling is presented. HeLa S3 cells enclosed in low-temperature gelling agarose were high-pressure frozen, freeze-substituted in acetone, and embedded in LR White at 0 degrees C. The morphology of such cells and the preservation of nuclear antigens were excellent in comparison with chemically fixed cells embedded in the same resin. The immunolabelling signal for different nuclear antigens was 4-to-13 times higher in high-pressure frozen than in chemically fixed cells. We conclude that one can successfully use high-pressure freezing/freeze-substitution and LR White embedding as an alternative of Lowicryl resins.


Assuntos
Resinas Acrílicas , Antígenos Nucleares/análise , Núcleo Celular/imunologia , Núcleo Celular/ultraestrutura , Criopreservação/métodos , Substituição ao Congelamento , Inclusão em Plástico/métodos , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...