Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 16(1): 59, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835276

RESUMO

Trends in the behavior of band gaps in short-period superlattices (SLs) composed of CdO and MgO layers were analyzed experimentally and theoretically for several thicknesses of CdO sublayers. The optical properties of the SLs were investigated by means of transmittance measurements at room temperature in the wavelength range 200-700 nm. The direct band gap of {CdO/MgO} SLs were tuned from 2.6 to 6 eV by varying the thickness of CdO from 1 to 12 monolayers while maintaining the same MgO layer thickness of 4 monolayers. Obtained values of direct and indirect band gaps are higher than those theoretically calculated by an ab initio method, but follow the same trend. X-ray measurements confirmed the presence of a rock salt structure in the SLs. Two oriented structures (111 and 100) grown on c- and r-oriented sapphire substrates were obtained. The measured lattice parameters increase with CdO layer thickness, and the experimental data are in agreement with the calculated results. This new kind of SL structure may be suitable for use in visible, UV and deep UV optoelectronics, especially because the energy gap can be precisely controlled over a wide range by modulating the sublayer thickness in the superlattices.

2.
Micron ; 134: 102864, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32251927

RESUMO

A multiple-quantum-well structure consisting of 40 periods of AlN/GaN:Si was investigated using a transmission electron microscope equipped with energy-dispersive X-ray spectroscopy. The thicknesses of the AlN barriers and the GaN quantum wells were 4 nm and 6 nm, respectively. The QW layers were doped with Si to a concentration of 1.3×1019cm-3 (0.012 % at). The procedure for quantifying such a doping level using AlN as a standard is presented. The EDS results (0.013 % at) are compared with secondary ion mass spectrometry measurements (0.05 % at).

3.
Sci Rep ; 7(1): 16055, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167513

RESUMO

Discussion of band gap behavior based on first principles calculations of the electronic band structures for several InN/GaN superlattices (SLs) (free-standing and pseudomorphic) grown along different directions (polar and nonpolar) is presented. Taking into account the dependence on internal strain and lattice geometry mainly two factors influence the dependence of the band gap, E g on the layer thickness: the internal electric field and the hyb wells) is more important. We also consider mIn ridization of well and barrier wave functions. We illustrate their influence on the band gap engineering by calculating the strength of built-in electric field and the oscillator strength. It appears that there are two interesting ranges of layer thicknesses. In one the influence of the electric field on the gaps is dominant (wider wells), whereas in the other the wave function hybridization (narrow wells) is more important. We also consider mIn 0.33 Ga 0.67 N/nGaN SLs, which seem to be easier to fabricate than high In content quantum wells. The calculated band gaps are compared with recent experimental data. It is shown that for In(Ga)N/GaN superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary InGaN alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...