Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 446, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550593

RESUMO

Pathological tau inclusions are neuropathologic hallmarks of many neurodegenerative diseases. We generated and characterized a transgenic mouse model expressing pathogenic human tau with S320F and P301S aggregating mutations (SPAM) at transgene levels below endogenous mouse tau protein levels. This mouse model develops a predictable temporal progression of tau pathology in the brain with biochemical and ultrastructural properties akin to authentic tau inclusions. Surprisingly, pathogenic human tau extensively recruited endogenous mouse tau into insoluble aggregates. Despite the early onset and rapid progressive nature of tau pathology, major neuroinflammatory and transcriptional changes were only detectable at later time points. Moreover, tau SPAM mice are the first model to develop loss of enteric neurons due to tau accumulation resulting in a lethal phenotype. With moderate transgene expression, rapidly progressing tau pathology, and a highly predictable lethal phenotype, the tau SPAM model reveals new associations of tau neurotoxicity in the brain and intestinal tract.


Assuntos
Encéfalo , Proteínas tau , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34314701

RESUMO

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Assuntos
Cérebro/patologia , Proteína Semelhante a ELAV 4/genética , Ácido Glutâmico/metabolismo , Mutação/genética , Neurônios/patologia , Organoides/metabolismo , Splicing de RNA/genética , Proteínas tau/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Hidrazonas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides/efeitos dos fármacos , Organoides/ultraestrutura , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Grânulos de Estresse/efeitos dos fármacos , Grânulos de Estresse/metabolismo , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
3.
J Biol Chem ; 294(48): 18488-18503, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31653695

RESUMO

tau is a microtubule (MT)-associated protein that promotes tubulin assembly and stabilizes MTs by binding longitudinally along the MT surface. tau can aberrantly aggregate into pathological inclusions that define Alzheimer's disease, frontotemporal dementias, and other tauopathies. A spectrum of missense mutations in the tau-encoding gene microtubule-associated protein tau (MAPT) can cause frontotemporal dementias. tau aggregation is postulated to spread by a prion-like mechanism. Using a cell-based inclusion seeding assay, we recently reported that only a few tau variants are intrinsically prone to this type of aggregation. Here, we extended these studies to additional tau mutants and investigated their MT binding properties in mammalian cell-based assays. A limited number of tau variants exhibited modest aggregation propensity in vivo, but most tau mutants did not aggregate. Reduced MT binding appeared to be the most common dysfunction for the majority of tau variants due to missense mutations, implying that MT-targeting therapies could potentially be effective in the management of tauopathies.


Assuntos
Predisposição Genética para Doença/genética , Microtúbulos/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
4.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261380

RESUMO

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Assuntos
Sistema Nervoso Central/metabolismo , Mutação , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/psicologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Doença de Pick/genética , Doença de Pick/metabolismo , Doença de Pick/psicologia , Tauopatias/metabolismo , Tauopatias/psicologia
5.
J Exp Med ; 216(3): 539-555, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30770411

RESUMO

It has been challenging to produce ex vivo models of the inclusion pathologies that are hallmark pathologies of many neurodegenerative diseases. Using three-dimensional mouse brain slice cultures (BSCs), we have developed a paradigm that rapidly and robustly recapitulates mature neurofibrillary inclusion and Lewy body formation found in Alzheimer's and Parkinson's disease, respectively. This was achieved by transducing the BSCs with recombinant adeno-associated viruses (rAAVs) that express α-synuclein or variants of tau. Notably, the tauopathy BSC model enables screening of small molecule therapeutics and tracking of neurodegeneration. More generally, the rAAV BSC "toolkit" enables efficient transduction and transgene expression from neurons, microglia, astrocytes, and oligodendrocytes, alone or in combination, with transgene expression lasting for many months. These rAAV-based BSC models provide a cost-effective and facile alternative to in vivo studies, and in the future can become a widely adopted methodology to explore physiological and pathological mechanisms related to brain function and dysfunction.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Dependovirus/genética , Doença de Parkinson/patologia , Doença de Alzheimer/virologia , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica , Humanos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Microrganismos Geneticamente Modificados , Mutação , Neurônios/patologia , Técnicas de Cultura de Órgãos , Doença de Parkinson/virologia , Transdução Genética , Transgenes , alfa-Sinucleína/genética , Proteínas tau/genética
6.
Lab Invest ; 99(7): 912-928, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30742061

RESUMO

In multiple neurodegenerative diseases, including Alzheimer's disease (AD), a prominent pathological feature is the aberrant aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-like propagation in various model systems raise questions about the generalizability of this mechanism in various tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration has important implications for tau-targeting therapeutics.


Assuntos
Agregação Patológica de Proteínas , Tauopatias/genética , Proteínas tau/genética , Animais , Humanos , Microtúbulos/metabolismo , Mutação , Transtornos Parkinsonianos/genética , Processamento de Proteína Pós-Traducional , Processamento de Proteína , Proteínas tau/metabolismo
7.
Neurosci Lett ; 692: 187-192, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30423399

RESUMO

Alzheimer's disease and other tauopathies are characterized by the brain accumulation of hyperphosphorylated aggregated tau protein forming pathological inclusions. Although elevated tau phosphorylated at many amino acid residues is a hallmark of pathological tau, some evidence suggest that tau phosphorylation at unique sites, especially within its microtubule-binding domain, might inhibit aggregation. In this study, the effects of phosphorylation of two unique residues within this domain, serine 305 (S305) and serine 320 (S320), were examined in the context of established aggregation and seeding models. It was found that the S305E phosphomimetic significantly inhibited both tau seeding and tau aggregation in this model, while S320E did not. To further explore S305 phosphorylation in vivo, a monoclonal antibody (2G2) specific for tau phosphorylated at S305 was generated and characterized. Consistent with inhibition of tau aggregation, phosphorylation of S305 was not detected in pathological tau inclusions in Alzheimer's disease brain tissue. This study indicates that phosphorylation of unique tau residues can be inhibitory to aggregate formation, and has important implications for potential kinase therapies. Additionally, it creates new tools for observing these changes in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Serina/metabolismo , Proteínas tau/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Fosforilação , Proteínas tau/imunologia
8.
J Biol Chem ; 293(49): 18914-18932, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30327435

RESUMO

α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.


Assuntos
Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/imunologia , Animais , Anticorpos Monoclonais/imunologia , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/imunologia , Multimerização Proteica , Proteólise , alfa-Sinucleína/imunologia
10.
Behav Brain Res ; 340: 14-22, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28419850

RESUMO

BACKGROUND & AIM: Overpressure blast-wave induced brain injury (OBI) and its long-term neurological outcome pose significant concerns for military personnel. Our aim is to investigate the mechanism of injury due to OBI. METHODS: Rats were divided into 3 groups: (1) Control, (2) OBI (exposed 30psi peak pressure, 2-2.5ms), (3) Repeated OBI (r-OBI) (three exposures over one-week period). Lung and brain (cortex and cerebellum) tissues were collected at 24h post injury. RESULTS: The neurological examination score was worse in OBI and r-OBI (4.2±0.6 and 3.7±0.5, respectively) versus controls (0.7±0.2). A significant positive correlation between lung and brain edema was found. Malondialdehyde (index for lipid peroxidation), significantly increased in OBI and r-OBI groups in cortex (p<0.05) and cerebellum (p<0.01-0.001). The glutathione (endogenous antioxidant) level decreased in cortex (p<0.01) and cerebellum (p<0.05) of r-OBI group when compared with the controls. Myeloperoxidase activity indicating neutrophil infiltration, was significantly (p<0.01-0.05) elevated in r-OBI. Additionally, tissue thromboplastin activity, a coagulation marker, was elevated, indicating a tendency to bleed. NGF and NF-κB proteins along with Iba-1 and GFAP immunoreactivity significantly augmented in the frontal cortex demonstrating microglial activation. Serum biomarkers of injury, NSE, TNF-alpha and leptin, were also elevated. CONCLUSION: OBI triggers both inflammation and oxidative injury in the brain. This data in conjunction with our previous observations suggests that OBI triggers a cascade of events beginning with impaired cerebral vascular function leading to ischemia and chronic neurological consequences.


Assuntos
Traumatismos por Explosões/metabolismo , Cerebelo/lesões , Lobo Frontal/lesões , Inflamação/metabolismo , Estresse Oxidativo/fisiologia , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Glutationa/metabolismo , Inflamação/etiologia , Inflamação/patologia , Leptina/sangue , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Microglia/metabolismo , Microglia/patologia , Peroxidase/metabolismo , Ratos Sprague-Dawley , Tromboplastina/metabolismo
11.
J Biol Chem ; 293(7): 2408-2421, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29259137

RESUMO

The accumulation of aberrantly aggregated MAPT (microtubule-associated protein Tau) defines a spectrum of tauopathies, including Alzheimer's disease. Mutations in the MAPT gene cause frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), characterized by neuronal pathological Tau inclusions in the form of neurofibrillary tangles and Pick bodies and in some cases glial Tau pathology. Increasing evidence points to the importance of prion-like seeding as a mechanism for the pathological spread in tauopathy and other neurodegenerative diseases. Herein, using a cell culture model, we examined a multitude of genetic FTDP-17 Tau variants for their ability to be seeded by exogenous Tau fibrils. Our findings revealed stark differences between FTDP-17 Tau variants in their ability to be seeded, with variants at Pro301 and Ser320 showing robust aggregation with seeding. Similarly, we elucidated the importance of certain Tau protein regions and unique residues, including the role of Pro301 in inhibiting Tau aggregation. We also revealed potential barriers in cross-seeding between three-repeat and four-repeat Tau isoforms. Overall, these differences alluded to potential mechanistic differences between wildtype and FTDP-17 Tau variants, as well as different Tau isoforms, in influencing Tau aggregation. Furthermore, by combining two FTDP-17 Tau variants (either P301L or P301S with S320F), we generated aggressive models of tauopathy that do not require exogenous seeding. These models will allow for rapid screening of potential therapeutics to alleviate Tau aggregation without the need for exogenous Tau fibrils. Together, these studies provide novel insights in the molecular determinants that modulate Tau aggregation.


Assuntos
Tauopatias/metabolismo , Proteínas tau/metabolismo , Motivos de Aminoácidos , Humanos , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Príons/química , Príons/genética , Príons/metabolismo , Agregados Proteicos , Tauopatias/genética , Proteínas tau/química , Proteínas tau/genética
12.
Acta Neuropathol Commun ; 5(1): 58, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28760159

RESUMO

Tauopathies are a group of neurodegenerative disorders, including Alzheimer's disease, defined by the presence of brain pathological inclusions comprised of abnormally aggregated and highly phosphorylated tau protein. The abundance of brain tau aggregates correlates with disease severity and select phospho-tau epitopes increase at early stages of disease. We generated and characterized a series of novel monoclonal antibodies directed to tau phosphorylated at several of these phospho-epitopes, including Ser396/Ser404, Ser404 and Thr205. We also generated phosphorylation independent antibodies against amino acid residues 193-211. We show that most of these antibodies are highly specific for tau and strongly recognize pathological inclusions in human brains and in a transgenic mouse model of tauopathy. They also reveal epitope-specific differences in the biochemical properties of Alzheimer's disease sarkosyl-insoluble tau. These new reagents will be useful for investigating the progression of tau pathology and further as tools to target the cellular transmission of tau pathology.


Assuntos
Anticorpos Monoclonais , Epitopos , Proteínas tau/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hibridomas/metabolismo , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Fosforilação , Proteínas Recombinantes/metabolismo , Proteínas tau/deficiência , Proteínas tau/genética
14.
J Cereb Blood Flow Metab ; 35(12): 1950-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26104291

RESUMO

Overpressure blast-wave induced brain injury (OBI) leads to progressive pathophysiologic changes resulting in a reduction in brain blood flow, blood brain barrier breakdown, edema, and cerebral ischemia. The aim of this study was to evaluate cerebral vascular function after single and repeated OBI. Male Sprague-Dawley rats were divided into three groups: Control (Naive), single OBI (30 psi peak pressure, 1 to 2 msec duration), and repeated (days 1, 4, and 7) OBI (r-OBI). Rats were killed 24 hours after injury and the basilar artery was isolated, cannulated, and pressurized (90 cm H2O). Vascular responses to potassium chloride (KCl) (30 to 100 mmol/L), endothelin-1 (10(-12) to 10(-7) mol/L), acetylcholine (ACh) (10(-10) to 10(-4) mol/L) and diethylamine-NONO-ate (DEA-NONO-ate) (10(-10) to 10(-4) mol/L) were evaluated. The OBI resulted in an increase in the contractile responses to endothelin and a decrease in the relaxant responses to ACh in both single and r-OBI groups. However, impaired DEA-NONO-ate-induced vasodilation and increased wall thickness to lumen ratio were observed only in the r-OBI group. The endothelin-1 type A (ET(A)) receptor and endothelial nitric oxide synthase (eNOS) immunoreactivity were significantly enhanced by OBI. These findings indicate that both single and r-OBI impairs cerebral vascular endothelium-dependent dilation, potentially a consequence of endothelial dysfunction and/or vascular remodelling in basilar arteries after OBI.


Assuntos
Artéria Basilar/patologia , Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Animais , Capilares/patologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Pressão , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina A/metabolismo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
15.
Sci Rep ; 5: 11178, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26058556

RESUMO

Single and repeated sports-related mild traumatic brain injury (mTBI), also referred to as concussion, can result in chronic post-concussive syndrome (PCS), neuropsychological and cognitive deficits, or chronic traumatic encephalopathy (CTE). However PCS is often difficult to diagnose using routine clinical, neuroimaging or laboratory evaluations, while CTE currently only can be definitively diagnosed postmortem. We sought to develop an animal model to simulate human repetitive concussive head injury for systematic study. In this study, mice received single or multiple head impacts by a stereotaxic impact device with a custom-made rubber tip-fitted impactor. Dynamic changes in MRI, neurobiochemical markers (Tau hyperphosphorylation and glia activation in brain tissues) and neurobehavioral functions such as anxiety, depression, motor function and cognitive function at various acute/subacute (1-7 day post-injury) and chronic (14-60 days post-injury) time points were examined. To explore the potential biomarkers of rCHI, serum levels of total Tau (T-Tau) and phosphorylated Tau (P-Tau) were also monitored at various time points. Our results show temporal dynamics of MRI consistent with structural perturbation in the acute phase and neurobiochemical changes (P-Tau and GFAP induction) in the subacute and chronic phase as well as development of chronic neurobehavioral changes, which resemble those observed in mTBI patients.


Assuntos
Lesão Encefálica Crônica/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Animais , Lesão Encefálica Crônica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Physiol Rep ; 2(6)2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907295

RESUMO

Aging leads to progressive pathophysiological changes in blood vessels of the brain and periphery. The aim of this study was to evaluate the effects of aging on cerebral vascular function and structure. Basilar arteries were isolated from male Fischer 344 cross Brown Norway (F344xBN) rats at 3, 8, and 24 months of age. The basilar arteries were cannulated in the pressurized system (90 cm H2O). Contractile responses to KCl (30-120 mmol/L) and endothelin-1 (10(-11)-10(-7) mol/L) were evaluated. Responses to acetylcholine (ACh) (10(-10)-10(-4) mol/L), diethylamine (DEA)-NONO-ate (10(-10)-10(-4) mol/L), and papaverin (10(-10)-10(-4) mol/L) were assessed to determine both endothelium-dependent and endothelium-independent responsiveness. Advanced aging (24 months) decreased responses of the basilar artery to both the contractile and relaxing agents; whereas, DEA-induced dilation was significantly higher in the 8-month-old group compared with the younger and older groups. The arterial wall-to-lumen ratio was significantly increased in 24-month-old rats. Smooth muscle cell count was also decreased in old rats. These findings indicate that aging produces dysfunction of both the endothelium and the vascular smooth muscle in the basilar artery. Aging also alters wall structure of the basilar artery, possibly through decreases in smooth muscle cell number and concomitant hypertrophy.

17.
Adv Physiol Educ ; 37(2): 176-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23728135

RESUMO

Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.


Assuntos
Engenharia Biomédica/educação , Educação Profissionalizante/métodos , Fisiologia/educação , Ensino/métodos , Compreensão , Instrução por Computador , Currículo , Humanos , Aprendizagem , Modelos Educacionais , Desenvolvimento de Programas
18.
Adv Physiol Educ ; 33(1): 53-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19261761

RESUMO

Respiratory mechanics is a difficult topic for instructors and students alike. Existing respiratory mechanics models are limited in their abilities to demonstrate any effects of rib cage movement on alveolar and intrapleural pressures. We developed a model that can be used in both large and small classroom settings. This model contains digital pressure displays and computer integration for real-time demonstration of pressure changes that correspond to the different phases of breathing. Moving the simulated diaphragm and rib cage causes a volume change that results in pressure changes visible on the digital sensors and computer display. Device testing confirmed the model's ability to accurately demonstrate pressure changes in proportion to physiological values. Classroom testing in 427 surveyed students showed improved understanding of respiratory concepts (P < 0.05). We conclude that our respiratory mechanics model is a valuable instructional tool and provide detailed instructions for those who would like to create their own.


Assuntos
Modelos Anatômicos , Fisiologia/educação , Pneumologia/educação , Mecânica Respiratória , Ensino/métodos , Custos e Análise de Custo , Eletrônica , Desenho de Equipamento , Humanos , Pulmão , Pleura , Costelas , Software , Ensino/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...