Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 118: 31-39.e3, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535408

RESUMO

In utero hematopoietic cell transplantation (IUHCT) is an experimental treatment for congenital hemoglobinopathies, including Sickle cell disease and thalassemias. One of the principal advantages of IUHCT is the predisposition of the developing fetus toward immunologic tolerance. This allows for engraftment across immune barriers without immunosuppression and, potentially, decreased susceptibility to graft-versus-host disease (GVHD). We demonstrate fetal resistance to GVHD following T cell-replete allogeneic hematopoietic cell transplantation compared with the neonate. We show that this resistance is associated with elevated fetal serum interleukin-10 conducive to the induction of regulatory T cells (Tregs). Finally, we demonstrate that the adoptive transfer of Tregs from IUHCT recipients to neonates uniformly prevents GVHD, recapitulating the predisposition to tolerance observed after fetal allotransplantation. These findings demonstrate fetal resistance to GVHD following hematopoietic cell transplantation and elucidate Tregs as important contributors.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Recém-Nascido , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Tolerância Imunológica , Feto , Linfócitos T Reguladores
2.
Blood Adv ; 4(6): 1102-1114, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32203584

RESUMO

In utero hematopoietic cell transplantation (IUHCT) has the potential to cure congenital hematologic disorders including sickle cell disease. However, the window of opportunity for IUHCT closes with the acquisition of T-cell immunity, beginning at approximately 14 weeks gestation, posing significant technical challenges and excluding from treatment fetuses evaluated after the first trimester. Here we report that regulatory T cells can promote alloengraftment and preserve allograft tolerance after the acquisition of T-cell immunity in a mouse model of late-gestation IUHCT. We show that allografts enriched with regulatory T cells harvested from either IUHCT-tolerant or naive mice engraft at 20 days post coitum (DPC) with equal frequency to unenriched allografts transplanted at 14 DPC. Long-term, multilineage donor cell chimerism was achieved in the absence of graft-versus-host disease or mortality. Decreased alloreactivity among recipient T cells was observed consistent with donor-specific tolerance. These findings suggest that donor graft enrichment with regulatory T cells could be used to successfully perform IUHCT later in gestation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Feminino , Camundongos , Gravidez , Linfócitos T Reguladores , Quimeras de Transplante , Condicionamento Pré-Transplante
3.
Blood ; 134(22): 1983-1995, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31570489

RESUMO

Host cell competition is a major barrier to engraftment after in utero hematopoietic cell transplantation (IUHCT). Here we describe a cell-engineering strategy using glycogen synthase kinase-3 (GSK3) inhibitor-loaded nanoparticles conjugated to the surface of donor hematopoietic cells to enhance their proliferation kinetics and ability to compete against their fetal host equivalents. With this approach, we achieved remarkable levels of stable, long-term hematopoietic engraftment for up to 24 weeks post-IUHCT. We also show that the salutary effects of the nanoparticle-released GSK3 inhibitor are specific to donor progenitor/stem cells and achieved by a pseudoautocrine mechanism. These results establish that IUHCT of hematopoietic cells decorated with GSK3 inhibitor-loaded nanoparticles can produce therapeutic levels of long-term engraftment and could therefore allow single-step prenatal treatment of congenital hematological disorders.


Assuntos
Comunicação Autócrina , Engenharia Celular , Inibidores Enzimáticos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Nanopartículas/química , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA