Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Pollut ; 351: 124088, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697250

RESUMO

The contamination of freshwater with microplastics (MPs) has been established globally. While the analysis of MPs has predominantly involved spectroscopic methods for revealing particle numbers, the potential of employing spectroscopy for mass estimation has been underutilized. Consequently, there is a need to enhance our understanding of the mass loads of MPs and ensure the complementarity and comparability of various techniques for accurate quantification. This study presents the first comparative results on urban water samples using micro Fourier-transform infrared (µ-FTIR) imaging and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to identify and quantify MPs in both particle numbers and mass concentration. Two sampling campaigns in summer and winter were conducted at 11 locations within the Amsterdam canal network. An advanced in-situ volume-reducing sampling pump was employed to collect MPs from the surface water within the size fraction of 10-300 µm. The analysis revealed MP concentrations within the range of 16-107 MP/m3, estimated to be 2.0-789 µg/m3 by µ-FTIR imaging and 8.5-754 µg/m3 by Py-GC-MS. The results of the two analysis techniques showed good comparability in terms of the general trends of MP abundances, with variations in polymer compositions due to the inherent inter-methodological differences. Elevated MP concentrations were observed in the city center compared to the suburban areas. In addition, seasonal differences in MP abundances were noted at the locations with high human activity.


Assuntos
Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microplásticos/análise , Países Baixos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cidades , Água Doce/química
3.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...