Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(4): 104083, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35372805

RESUMO

The spinal cord is engaged in all forms of motor performance but its functions are far from understood. Because network connectivity defines function, we explored the connectivity of muscular, tendon, and tactile sensory inputs among a wide population of spinal interneurons in the lower cervical segments. Using low noise intracellular whole cell recordings in the decerebrated, non-anesthetized cat in vivo, we could define mono-, di-, and trisynaptic inputs as well as the weights of each input. Whereas each neuron had a highly specific input, and each indirect input could moreover be explained by inputs in other recorded neurons, we unexpectedly also found the input connectivity of the spinal interneuron population to form a continuum. Our data hence contrasts with the currently widespread notion of distinct classes of interneurons. We argue that this suggested diversified physiological connectivity, which likely requires a major component of circuitry learning, implies a more flexible functionality.

2.
Front Neurorobot ; 15: 762431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955801

RESUMO

To control highly-dynamic compliant motions such as running or hopping, vertebrates rely on reflexes and Central Pattern Generators (CPGs) as core strategies. However, decoding how much each strategy contributes to the control and how they are adjusted under different conditions is still a major challenge. To help solve this question, the present paper provides a comprehensive comparison of reflexes, CPGs and a commonly used combination of the two applied to a biomimetic robot. It leverages recent findings indicating that in mammals both control principles act within a low-dimensional control submanifold. This substantially reduces the search space of parameters and enables the quantifiable comparison of the different control strategies. The chosen metrics are motion stability and energy efficiency, both key aspects for the evolution of the central nervous system. We find that neither for stability nor energy efficiency it is favorable to apply the state-of-the-art approach of a continuously feedback-adapted CPG. In both aspects, a pure reflex is more effective, but the pure CPG allows easy signal alteration when needed. Additionally, the hardware experiments clearly show that the shape of a control signal has a strong influence on energy efficiency, while previous research usually only focused on frequency alignment. Both findings suggest that currently used methods to combine the advantages of reflexes and CPGs can be improved. In future research, possible combinations of the control strategies should be reconsidered, specifically including the modulation of the control signal's shape. For this endeavor, the presented setup provides a valuable benchmark framework to enable the quantitative comparison of different bioinspired control principles.

3.
PLoS One ; 15(9): e0238586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915814

RESUMO

Locomotion control in mammals has been hypothesized to be governed by a central pattern generator (CPG) located in the circuitry of the spinal cord. The most common model of the CPG is the half center model, where two pools of neurons generate alternating, oscillatory activity. In this model, the pools reciprocally inhibit each other ensuring alternating activity. There is experimental support for reciprocal inhibition. However another crucial part of the half center model is a self inhibitory mechanism which prevents the neurons of each individual pool from infinite firing. Self-inhibition is hence necessary to obtain alternating activity. But critical parts of the experimental bases for the proposed mechanisms for self-inhibition were obtained in vitro, in preparations of juvenile animals. The commonly used adaptation of spike firing does not appear to be present in adult animals in vivo. We therefore modeled several possible self inhibitory mechanisms for locomotor control. Based on currently published data, previously proposed hypotheses of the self inhibitory mechanism, necessary to support the CPG hypothesis, seems to be put into question by functional evaluation tests or by in vivo data. This opens for alternative explanations of how locomotion activity patterns in the adult mammal could be generated.


Assuntos
Geradores de Padrão Central/fisiologia , Inibição Psicológica , Modelos Neurológicos , Animais , Simulação por Computador , Interneurônios/fisiologia , Mamíferos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
4.
Brain Imaging Behav ; 12(6): 1822-1827, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29442271

RESUMO

Changes in functional connectivity (FC) measured using resting state fMRI within the basal ganglia network (BGN) have been observed in pathologies with altered neurotransmitter systems and conditions involving motor control and dopaminergic processes. However, less is known about non-disease factors affecting FC in the BGN. The aim of this study was to examine associations of FC within the BGN with dopaminergic processes in healthy older adults. We explored the relationship between FC in the BGN and variables related to demographics, impulsive behavior, self-paced tasks, mood, and motor correlates in 486 participants in the Whitehall-II imaging sub-study using both region-of-interest- and voxel-based approaches. Age was the only correlate of FC in the BGN that was consistently significant with both analyses. The observed adverse effect of aging on FC may relate to alterations of the dopaminergic system, but no unique dopamine-related function seemed to have a link with FC beyond those detectable in and linearly correlated with healthy aging.


Assuntos
Gânglios da Base/fisiologia , Envelhecimento Saudável/fisiologia , Afeto , Idoso , Idoso de 80 Anos ou mais , Gânglios da Base/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Envelhecimento Saudável/psicologia , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Atividade Motora , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso , Sono
5.
Front Cell Neurosci ; 12: 506, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618646

RESUMO

Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient solution to adapt the activation of individual muscle groups during locomotion to changing conditions such as ground compliance and carried load. Although it is not unconceivable that spinal ionotropic circuitry could achieve scaling by itself, neurophysiological findings emphasize that this is a unique functionality of metabotropic effects since recent recordings in sensorimotor circuitry conflict with mechanisms proposed for ionotropic scaling in other CNS areas. We substantiate that precision scaling of ionotropic subcircuits is a main functional principle for many monoaminergic projections throughout the CNS, implying that the monoaminergic circuitry forms a network within the network composed of the ionotropic circuitry. Thereby, we provide an early-level interpretation of the mechanisms of psychopharmacological drugs that interfere with the monoaminergic systems.

6.
IEEE Trans Med Imaging ; 36(9): 1784-1795, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28541197

RESUMO

Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.


Assuntos
Mamografia , Mama , Humanos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica , Interpretação de Imagem Radiográfica Assistida por Computador , Raios X
7.
Front Neurorobot ; 10: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014051

RESUMO

There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA