Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169859

RESUMO

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Assuntos
Arginase , Microglia , Animais , Feminino , Camundongos , Arginase/genética , Arginase/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo
2.
Cell Death Dis ; 14(2): 128, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792604

RESUMO

During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Animais , Humanos , Hemorragia Cerebral/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Inflamação/complicações , Hematoma/tratamento farmacológico , Hematoma/complicações , Hematoma/metabolismo , Imunidade Inata , Modelos Animais de Doenças , Edema Encefálico/complicações , Fatores de Crescimento Neural/uso terapêutico
3.
Cell Death Dis ; 13(11): 953, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371383

RESUMO

Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the latter fuse with lysosomes/vacuoles for cargo degradation and recycling. Here, we report that yeast Set2, a histone lysine methyltransferase, and its mammalian homolog, SETD2, both act as positive transcriptional regulators of autophagy. However, whereas Set2 regulates the expression of several autophagy-related (Atg) genes upon nitrogen starvation, SETD2 effects in mammals were found to be more restricted. In fact, SETD2 appears to primarily regulate the differential expression of protein isoforms encoded by the ATG14 gene. SETD2 promotes the expression of a long ATG14 isoform, ATG14L, that contains an N-terminal cysteine repeats domain, essential for the efficient fusion of the autophagosome with the lysosome, that is absent in the short ATG14 isoform, ATG14S. Accordingly, SETD2 loss of function decreases autophagic flux, as well as the turnover of aggregation-prone proteins such as mutant HTT (huntingtin) leading to increased cellular toxicity. Hence, our findings bring evidence to the emerging concept that the production of autophagy-related protein isoforms can differentially affect core autophagy machinery bringing an additional level of complexity to the regulation of this biological process in more complex organisms.


Assuntos
Autofagossomos , Macroautofagia , Animais , Autofagossomos/metabolismo , Lisossomos/metabolismo , Autofagia/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos
4.
Front Cell Neurosci ; 16: 900725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783104

RESUMO

Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF's function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.

5.
Sci Rep ; 12(1): 161, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997071

RESUMO

The cornea, transparent and outermost structure of camera-type eyes, is prone to environmental challenges, but has remarkable wound healing capabilities which enables to preserve vision. The manner in which cell plasticity impacts wound healing remains to be determined. In this study, we report rapid wound closure after zebrafish corneal epithelium abrasion. Furthermore, by investigating the cellular and molecular events taking place during corneal epithelial closure, we show the induction of a bilateral response to a unilateral wound. Our transcriptomic results, together with our TGF-beta receptor inhibition experiments, demonstrate conclusively the crucial role of TGF-beta signaling in corneal wound healing. Finally, our results on Pax6 expression and bilateral wound healing, demonstrate the decisive impact of epithelial cell plasticity on the pace of healing. Altogether, our study describes terminally differentiated cell competencies in the healing of an injured cornea. These findings will enhance the translation of research on cell plasticity to organ regeneration.


Assuntos
Plasticidade Celular , Lesões da Córnea/patologia , Células Epiteliais/patologia , Epitélio Corneano/patologia , Cicatrização , Animais , Lesões da Córnea/genética , Lesões da Córnea/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Epitélio Corneano/lesões , Epitélio Corneano/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Front Physiol ; 12: 705183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646147

RESUMO

Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is one of a few neurotrophic factors described in Drosophila melanogaster (DmMANF) but its function is still poorly characterized. In the present study we found that DmMANF is expressed in different clusters of clock neurons. In particular, the PDF-positive large (l-LNv) and small (s-LNv) ventral lateral neurons, the CRYPTOCHROME-positive dorsal lateral neurons (LNd), the group 1 dorsal neurons posterior (DN1p) and different tim-positive cells in the fly's visual system. Importantly, DmMANF expression in the ventral lateral neurons is not controlled by the clock nor it affects its molecular mechanism. However, silencing DmMANF expression in clock neurons affects the rhythm of locomotor activity in light:dark and constant darkness conditions. Such phenotypes correlate with abnormal morphology of the dorsal projections of the s-LNv and with reduced arborizations of the l-LNv in the medulla of the optic lobe. Additionally, we show that DmMANF is important for normal morphology of the L2 interneurons in the visual system and for the circadian rhythm in the topology of their dendritic tree. Our results indicate that DmMANF is important not only for the development of neurites but also for maintaining circadian plasticity of neurons.

7.
Exp Neurol ; 329: 113288, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229226

RESUMO

The peri-infarct region after ischemic stroke is the anatomical location for many of the endogenous recovery processes; however, -the molecular events in the peri-infarct region remain poorly characterized. In this study, we examine the molecular profile of the peri-infarct region on post-stroke day four, a time when reparative processes are ongoing. We used a multiomics approach, involving RNA sequencing, and mass spectrometry-based proteomics and metabolomics to characterize molecular changes in the peri-infarct region. We also took advantage of our previously developed method to express transgenes in the peri-infarct region where self-complementary adeno-associated virus (AAV) vectors were injected into the brain parenchyma on post-stroke day 2. We have previously used this method to show that mesencephalic astrocyte-derived neurotrophic factor (MANF) enhances functional recovery from stroke and recruits phagocytic cells to the peri-infarct region. Here, we first analyzed the effects of stroke to the peri-infarct region on post-stroke day 4 in comparison to sham-operated animals, finding that strokeinduced changes in 3345 transcripts, 341 proteins, and 88 metabolites. We found that after stroke, genes related to inflammation, proliferation, apoptosis, and regeneration were upregulated, whereas genes encoding neuroactive ligand receptors and calcium-binding proteins were downregulated. In proteomics, we detected upregulation of proteins related to protein synthesis and downregulation of neuronal proteins. Metabolomic studies indicated that in after stroke tissue there is an increase in saccharides, sugar phosphates, ceramides and free fatty acids and a decrease of adenine, hypoxantine, adenosine and guanosine. We then compared the effects of post-stroke delivery of AAV1-MANF to AAV1-eGFP (enhanced green fluorescent protein). MANF administration increased the expression of 77 genes, most of which were related to immune response. In proteomics, MANF administration reduced S100A8 and S100A9 protein levels. In metabolomics, no significant differences between MANF and eGFP treatment were detected, but relative to sham surgery group, most of the changes in lipids were significant in the AAV-eGFP group only. This work describes the molecular profile of the peri-infarct region during recovery from ischemic stroke, and establishes a resource for further stroke studies. These results provide further support for parenchymal MANF as a modulator of phagocytic function.


Assuntos
Infarto Cerebral/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteômica/métodos , Acidente Vascular Cerebral/genética , Transcriptoma/genética , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Técnicas de Transferência de Genes , Masculino , Metabolômica/métodos , Fatores de Crescimento Neural/administração & dosagem , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fatores de Tempo
8.
Front Cell Neurosci ; 13: 522, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824268

RESUMO

Microglia, the immune cells of the brain, play a major role in the maintenance of brain homeostasis and constantly screen the brain environment to detect any infection or damage. Once activated by a stimulus, microglial cells initiate an immune response followed by the resolution of brain inflammation. A failure or deviation in the housekeeping function of these guardian cells can lead to multiple diseases, including brain cancer and neurodegenerative diseases such as Alzheimer's disease (AD). A small number of studies have investigated the causal relation of both diseases, thereby revealing an inverse relationship where cancer patients have a reduced risk to develop AD and vice versa. In this review, we aim to shed light on the role of microglia in the fate to develop specifically glioma as one type of cancer or AD. We will examine the common and/or opposing genetic predisposition as well as associated pathways of these diseases to unravel a possible involvement of microglia in the occurrence of either disease. Lastly, a set of guidelines will be proposed for future research and diagnostics to clarify and improve the knowledge on the role of microglia in the decision toward one pathology or another.

9.
MethodsX ; 6: 2429-2438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720232

RESUMO

Recent advances in bioengineering and biomaterials, along with knowledge deriving from the fields of developmental biology and stem cell research, have rendered feasible functional replacement of full organs. Here, we describe the methodology for bioengineering a tooth, starting from embryonic epithelial and mesenchymal single cell suspensions. In addition, we describe the subsequent steps of processing this minute structure for use in applications such as histological examination, immunofluorescence and in situ hybridisation. This methodology can be used for any minute structure that needs to be used in paraffin blocks. •Detailed methodology for reproducible and reliable results•Extra step to ensure single cell populations•Subsequent minute structure processing for histological analysis.

10.
Cell Rep ; 29(3): 697-713.e8, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618637

RESUMO

Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid ß plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Microglia/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/veterinária , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Elementos Facilitadores Genéticos , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
EMBO J ; 38(17): e101997, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31373067

RESUMO

Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.


Assuntos
Microglia/classificação , Animais , Plasticidade Celular , Humanos , Microglia/imunologia , Fenótipo
12.
Oncoimmunology ; 7(2): e1382790, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308302

RESUMO

High-grade gliomas are malignant aggressive primary brain tumors with limited therapeutic options, and dismal prognosis for patients. Microglia, the resident immune cells of the brain, are recruited and reprogrammed into tumor-supporting cells by glioma cells, which in turn positively influence tumor expansion and infiltration into surrounding brain tissues. Here, we report that glioma-induced microglia conversion is coupled to an increase of histone H4 lysine 16 (H4K16) acetylation level in microglia, through increased nuclear localization of the deacetylase SIRT1, which in turn results in deacetylation of the H4K16 acetyltransferase hMOF and its recruitment to the chromatin at promoter regions of microglial target genes. Furthermore, we demonstrate that manipulation of the microglial H4K16 acetylation level, taking advantage of the intrinsic H4K16 deacetylase or acetyltransferase activities of SIRT1 and hMOF, respectively, modulated the tumor-supporting function of microglia. This study provides evidence that post-translational modifications of histones and the histone-modifying enzymes controlling them, such as H4K16 acetylation regulated by hMOF and SIRT1, are part of the microglial pro-tumoral activation pathway initiated by glioma cancer cells and represent potentially novel therapeutic targets.

13.
Front Neurosci ; 11: 610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163014

RESUMO

In Drosophila melanogaster, mesencephalic astrocyte-derived neurotrophic factor (DmMANF) is an evolutionarily conserved ortholog of mammalian MANF and cerebral dopamine neurotrophic factor (CDNF), which have been shown to promote the survival of dopaminergic neurons in the brain. We observed especially high levels of DmMANF in the visual system of Drosophila, particularly in the first optic neuropil (lamina). In the lamina, DmMANF was found in glial cells (surface and epithelial glia), photoreceptors and interneurons. Interestingly, silencing of DmMANF in all neurons or specifically in photoreceptors or L2 interneurons had no impact on the structure of the visual system. However, downregulation of DmMANF in glial cells induced degeneration of the lamina. Remarkably, this degeneration in the form of holes and/or tightly packed membranes was observed only in the lamina epithelial glial cells. Those membranes seem to originate from the endoplasmic reticulum, which forms autophagosome membranes. Moreover, capitate projections, the epithelial glia invaginations into photoreceptor terminals that are involved in recycling of the photoreceptor neurotransmitter histamine, were less numerous after DmMANF silencing either in neurons or glial cells. The distribution of the alpha subunit of Na+/K+-ATPase protein in the lamina cell membranes was also changed. At the behavioral level, silencing of DmMANF either in neurons or glial cells affected the daily activity/sleep pattern, and flies showed less activity during the day but higher activity during the night than did controls. In the case of silencing in glia, the lifespan of flies was also shortened. The obtained results showed that DmMANF regulates many functions in the brain, particularly those dependent on glial cells.

14.
Gene Expr Patterns ; 18(1-2): 8-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25917377

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved neurotrophic factor that supports and protects dopaminergic neurons. The Drosophila MANF (DmMANF) null mutant animals die during early development, and DmMANF is required for the maintenance of dopamine positive neurites. The aim of this study was to investigate the role of DmMANF during later developmental stages. Here we report that DmMANF expression in the adult brain is much wider than in the embryonic and larval stages. It is expressed in both glia and neurons including dopaminergic neurons. Clonal analysis showed that DmMANF is not required cell-autonomously for the differentiation of either glia or dopaminergic neurons. In addition, DmMANF overexpression resulted in no apparent abnormal dopaminergic phenotype while DmMANF silencing in glia resulted in prolonged larval stage.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Sobrevivência Celular , Neurônios Dopaminérgicos/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Fatores de Crescimento Neural/genética , Neuroglia/metabolismo
15.
Cell Mol Life Sci ; 72(10): 1989-2004, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25511196

RESUMO

Glia are abundant cells in the brain of animals ranging from flies to humans. They perform conserved functions not only in neural development and wiring, but also in brain homeostasis. Here we show that by manipulating gene expression in glia, a previously unidentified cell type appears in the Drosophila brain during metamorphosis. More specifically, this cell type appears in three contexts: (1) after the induction of either immunity, or (2) autophagy, or (3) by silencing of neurotrophic factor DmMANF in glial cells. We call these cells MANF immunoreactive Cells (MiCs). MiCs are migratory based on their shape, appearance in brain areas where no cell bodies exist and the nuclear localization of dSTAT. They are labeled with a unique set of molecular markers including the conserved neurotrophic factor DmMANF and the transcription factor Zfh1. They possess the nuclearly localized protein Relish, which is the hallmark of immune response activation. They also express the conserved engulfment receptor Draper, therefore indicating that they are potentially phagocytic. Surprisingly, they do not express any of the common glial and neuronal markers. In addition, ultrastructural studies show that MiCs are extremely rich in lysosomes. Our findings reveal critical molecular and functional components of an unusual cell type in the Drosophila brain. We suggest that MiCs resemble macrophages/hemocytes and vertebrate microglia based on their appearance in the brain upon genetically challenged conditions and the expression of molecular markers. Interestingly, macrophages/hemocytes or microglia-like cells have not been reported in the fly nervous system before.


Assuntos
Encéfalo/citologia , Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inativação Gênica/fisiologia , Metamorfose Biológica/fisiologia , Fatores de Crescimento Neural/fisiologia , Neuroglia/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Bromodesoxiuridina , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Lisossomos/metabolismo , Metamorfose Biológica/imunologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fatores de Crescimento Neural/genética , Fatores de Transcrição/metabolismo
16.
PLoS One ; 9(6): e101141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963666

RESUMO

Understanding the control of stem cell (SC) differentiation is important to comprehend developmental processes as well as to develop clinical applications. Lin28 is a conserved molecule that is involved in SC maintenance and differentiation by regulating let-7 miRNA maturation. However, little is known about the in vivo function of Lin28. Here, we report critical roles for lin-28 during oogenesis. We found that let-7 maturation was increased in lin-28 null mutant fly ovaries. We showed that lin-28 null mutant female flies displayed reduced fecundity, due to defects in egg chamber formation. More specifically, we demonstrated that in mutant ovaries, the egg chambers fuse during early oogenesis resulting in abnormal late egg chambers. We also showed that this phenotype is the combined result of impaired germline SC differentiation and follicle SC differentiation. We suggest a model in which these multiple oogenesis defects result from a misregulation of the ecdysone signaling network, through the fine-tuning of Abrupt and Fasciclin2 expression. Our results give a better understanding of the evolutionarily conserved role of lin-28 on GSC maintenance and differentiation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , MicroRNAs/metabolismo , Músculos/citologia , Oogênese/fisiologia , Folículo Ovariano/citologia , Células-Tronco/citologia , Animais , Western Blotting , Diferenciação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Imunoenzimáticas , Masculino , MicroRNAs/genética , Músculos/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
17.
PLoS One ; 7(12): e51997, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284846

RESUMO

BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) family ligands are secreted growth factors distantly related to the TGF-ß superfamily. In mammals, they bind to the GDNF family receptor α (Gfrα) and signal through the Ret receptor tyrosine kinase. In order to gain insight into the evolution of the Ret-Gfr-Gdnf signaling system, we have cloned and characterized the first invertebrate Gfr-like cDNA (DmGfrl) from Drosophila melanogaster and generated a DmGfrl mutant allele. RESULTS: We found that DmGfrl encodes a large GPI-anchored membrane protein with four GFR-like domains. In line with the fact that insects lack GDNF ligands, DmGfrl mediated neither Drosophila Ret phosphorylation nor mammalian RET phosphorylation. In situ hybridization analysis revealed that DmGfrl is expressed in the central and peripheral nervous systems throughout Drosophila development, but, surprisingly, DmGfrl and DmRet expression patterns were largely non-overlapping. We generated a DmGfrl null allele by genomic FLP deletion and found that both DmGfrl null females and males are viable but display fertility defects. The female fertility defect manifested as dorsal appendage malformation, small size and reduced viability of eggs laid by mutant females. In male flies DmGfrl interacted genetically with the Drosophila Ncam (neural cell adhesion molecule) homolog FasII to regulate fertility. CONCLUSION: Our results suggest that Ret and Gfrl did not function as an in cis receptor-coreceptor pair before the emergence of GDNF family ligands, and that the Ncam-Gfr interaction predated the in cis Ret-Gfr interaction in evolution. The fertility defects that we describe in DmGfrl null flies suggest that GDNF receptor-like has an evolutionarily ancient role in regulating male fertility and a previously unrecognized role in regulating oogenesis. SIGNIFICANCE: These results shed light on the evolutionary aspects of the structure, expression and function of Ret-Gfrα and Ncam-Gfrα signaling complexes.


Assuntos
Evolução Biológica , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Ligadas por GPI/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epistasia Genética , Feminino , Fertilidade/genética , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica no Desenvolvimento , Ordem dos Genes , Glicosilação , Masculino , Dados de Sequência Molecular , Morfogênese/genética , Mutação , Neurônios/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...