Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Radiat Oncol ; 14(1): 187, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666094

RESUMO

PURPOSE: To determine if the performance of a knowledge based RapidPlan (RP) planning model could be improved with an iterative learning process, i.e. if plans generated by an RP model could be used as new input to re-train the model and achieve better performance. METHODS: Clinical VMAT plans from 83 patients presenting with head and neck cancer were selected to train an RP model, CL-1. With this model, new plans on the same patients were generated, and subsequently used as input to train a novel model, CL-2. Both models were validated on a cohort of 20 patients and dosimetric results compared. Another set of 83 plans was realised on the same patients with different planning criteria, by using a simple template with no attempt to manually improve the plan quality. Those plans were employed to train another model, TP-1. The differences between the plans generated by CL-1 and TP-1 for the validation cohort of patients were compared with respect to the differences between the original plans used to build the two models. RESULTS: The CL-2 model presented an improvement relative to CL-1, with higher R2 values and better regression plots. The mean doses to parallel organs decreased with CL-2, while D1% to serial organs increased (but not significantly). The different models CL-1 and TP-1 were able to yield plans according to each original strategy. CONCLUSION: A refined RP model allowed the generation of plans with improved quality, mostly for parallel organs at risk and, possibly, also the intrinsic model quality.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Órgãos em Risco , Melhoria de Qualidade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos
2.
Radiat Oncol ; 13(1): 126, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996873

RESUMO

BACKGROUND: Linac output as a function of field sizes has a phantom and a head scatter component. This last term can be measured in-air with appropriate build-up ensuring a complete electron equilibrium and the absence of the contaminant electrons. Equilibrium conditions could be achieved using a build-up cap or a mini-phantom. Monte Carlo simulations in a virtual phantom mimicking a mini-phantom were analysed with the aim of better understanding the setup conditions for measuring the collimator scatter factor that is the head scatter component of the linac output factors. METHODS: Beams of 6 and 15 MV from a TrueBeam, with size from 4 × 4 to 40 × 40 cm2 were simulated in cylindrical acrylic phantoms 20 cm long, of different diameters, from 0.5 to 4 cm, with the cylinder axis coincident with the beam central axis. The PRIMO package, based on PENELOPE Monte Carlo code, was used. The phase-space files for a Varian TrueBeam linac, provided by the linac vendor, were used for the linac head simulation. Depth dose curves were analysed, and collimator scatter factors estimated at different depth in the different phantom conditions. Additionally, in-air measurements using acyrilic and brass build-up caps, as well as acrylic mini-phantom were acquired for 6 and 18 MV beams from a Varian Clinac DHX. RESULTS: The depth dose curves along the cylinders were compared, showing, in each phantom, very similar curves for all analysed field sizes, proving the correctness in estimating the collimator scatter factor in the mini-phantom, provided to position the detector to a sufficient depth to exclude electron contamination. The results were confirmed by the measurements, where the acrylic build-up cap showed to be inadequate to properly estimate the collimator scatter factors, while the mini-phantom and the brass caps gave reasonable measurements. CONCLUSION: A better understanding of the beam characteristics inside a virtual mini-phantom through the analysis of depth dose curves, showed the critical points of using the acrylic build-up cap, and suggested the use of the mini-phantom for the collimator scatter factor measurements in the medium-large field size range.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Espalhamento de Radiação , Ar , Elétrons , Método de Monte Carlo , Radiometria
3.
Radiat Oncol ; 13(1): 92, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764450

RESUMO

BACKGROUND: Monte Carlo simulations were run to estimate the dose variations generated by thedifference arising from the chemical composition of the tissues. METHODS: CT datasets of five breast cancer patients were selected. Mammary gland was delineated as clinical target volume CTV, as well as CTV_lob and CTV_fat, being the lobular and fat fractions of the entire mammary gland. Patients were planned for volumetric modulated arc therapy technique, optimized in the Varian Eclipse treatment planning system. CT, structures and plans were imported in PRIMO, based on Monte Carlo code Penelope, to run three simulations: AdiMus, where the adipose and muscle tissues were automatically assigned to fat and lobular fractions of the breast; Adi and Mus, where adipose and muscle, respectively were assigned to the whole mammary gland. The specific tissue density was kept identical from the CT dataset. Differences in mean doses in the CTV_lob and CTV_fat structures were evaluated for the different tissue assignments. Differences generated by the tissue composition and estimated by Acuros dose calculations in Eclipse were also analysed. RESULTS: From Monte Carlo simulations, the dose in the lobular fraction of the breast, when adipose tissue is assigned in place of muscle, is overestimated by 1.25 ± 0.45%; the dose in the fat fraction of the breast with muscle tissue assignment is underestimated by 1.14 ± 0.51%. Acuros showed an overestimation of 0.98 ± 0.06% and an underestimation of 0.21 ± 0.14% in the lobular and fat portions, respectively. Reason of this dissimilarity resides in the fact that the two calculations, Monte Carlo and Acuros, differently manage the range of CT numbers and the material assignments, having Acuros an overlapping range, where two tissues are both present in defined proportions. CONCLUSION: Although not clinically significant, the dose deposition difference in the lobular and connective fat fraction of the breast tissue lead to an improved knowledge of the possible dose distribution and homogeneity in the breast radiation treatment.


Assuntos
Tecido Adiposo/efeitos da radiação , Algoritmos , Osso e Ossos/efeitos da radiação , Neoplasias da Mama/radioterapia , Pulmão/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/patologia , Feminino , Humanos , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
4.
Phys Med ; 49: 139-146, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28899649

RESUMO

INTRODUCTION: Nanochambers present some advantages in terms of energy independence and absolute dose measurement for small field dosimetry in the SBRT scenario. Characterization of a micro-chamber prototype was carried out both under flattened and flattening-filter-free (FFF) beams with particular focus on stem effect. METHODS: The study included characterization of leakage and stem effects, dose rate and dose per pulse dependence, measurement of profiles, and percentage depth doses (PDDs). Ion collection efficiency and polarity effects were measured and evaluated against field size and dose per pulse. The 6_MV, 6_MV_FFF and 10_MV FFF beams of a Varian EDGE were used. Output factors were measured for field sizes ranging from 0.8×0.8cm2 to 20×20cm2 and were compared with other detectors. RESULTS: The 2mm diameter of this chamber guarantees a high spatial resolution with low penumbra values. In orthogonal configuration a strong stem (and cable) effect was observed for small fields. Dose rate and dose per pulse dependence were <0.3% and 0.6% respectively for the whole range of considered values. The Nanochamber exhibits a field size (FS) dependence of the polarity correction >2%. The OF values were compared with other small field detectors showing a good agreement for field sizes >2×2cm2. The large field over-response was corrected applying kpol(FS). CONCLUSIONS: Nanochamber is an interesting option for small field measurements. The spherical shape of the active volume is an advantage in terms of reduced angular dependence. An interesting feature of the Nanochamber is its beam quality independence and, as a future development, the possibility to use it for small field absolute dosimetry.


Assuntos
Fótons/uso terapêutico , Radiometria/instrumentação , Radiocirurgia
5.
Radiat Oncol ; 12(1): 73, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28449704

RESUMO

BACKGROUND: To evaluate a knowledge based planning model for RapidPlan (RP) generated for advanced head and neck cancer (HNC) patient treatments, as well its ability to possibly improve the clinical plan quality. The stability of the model was assessed also for a different beam geometry, different dose fractionation and different management of bilateral structures (parotids). METHODS: Dosimetric and geometric data from plans of 83 patients presenting HNC were selected for the model training. All the plans used volumetric modulated arc therapy (VMAT, RapidArc) to treat two targets at dose levels of 69.96 and 54.45 Gy in 33 fractions with simultaneous integrated boost. Two models were generated, the first separating the ipsi- and contra-lateral parotids, while the second associating the two parotids to a single structure for training. The optimization objectives were adjusted to the final model to better translate the institutional planning and dosimetric strategies and trade-offs. The models were validated on 20 HNC patients, comparing the RP generated plans and the clinical plans. RP generated plans were also compared between the clinical beam arrangement and a simpler geometry, as well as for a different fractionation scheme. RESULTS: RP improved significantly the clinical plan quality, with a reduction of 2 Gy, 5 Gy, and 10 Gy of the mean parotid, oral cavity and laryngeal doses, respectively. A simpler beam geometry was deteriorating the plan quality, but in a small amount, keeping a significant improvement relative to the clinical plan. The two models, with one or two parotid structures, showed very similar results. NTCP evaluations indicated the possibility of improving (NTCP decreasing of about 7%) the toxicity profile when using the RP solution. CONCLUSIONS: The HNC RP model showed improved plan quality and planning stability for beam geometry and fractionation. An adequate choice of the objectives in the model is necessary for the trade-offs strategies.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Teóricos , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
6.
Phys Med ; 44: 131-138, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28433508

RESUMO

Lung stereotactic body radiotherapy (SBRT) is an accurate and precise technique to treat lung tumors with high 'ablative' doses. Given the encouraging data in terms of local control and toxicity profile, SBRT has currently become a treatment option for both early stage lung cancer and lung oligometastatic disease in patients who are medically inoperable or refuse surgical resection. Dose-adapted fractionation schedules and ongoing prospective trials should provide further evidence of SBRT safety trying to reduce toxicities and complications. In this heterogeneous scenario, a non-systematic review of dose constraints for lung SBRT was performed, including the main organs at risk in the thorax.


Assuntos
Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Radiocirurgia/efeitos adversos , Humanos
7.
Phys Med ; 30(3): 296-300, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24076257

RESUMO

PURPOSE: To investigate the correlation between total monitor units (MU), dosimetric findings, and pre-treatment quality assurance for volumetric modulated arc therapy (VMAT) by RapidArc (RA). METHODS AND MATERIALS: Ten patients with breast cancer were considered. Dose prescriptions were: 48 Gy and 40.5 Gy in 15 fractions to, respectively, PTV(Boost) and PTVWholeBreast. A reference plan was optimized and four more plans using the "MU Objective", a tool for total MU controlling, were prepared imposing ± 20 and ± 50% total MU for inducing different complexities. Plan objectives were: D95% > 95% for both PTVs, and D2% < 107% for PTV(Boost); mean dose < 9.5 Gy and V20 Gy < 10% for ipsilateral lung; V18 Gy < 5% for heart; mean dose <3 Gy for controlateral breast; furthermore V5 Gy, V10 Gy, V20 Gy, and V30 Gy to body were minimized. Plans were evaluated in terms of technical parameters, dosimetric plan objectives findings and pre-treatment quality assurance (QA). RESULTS: Concerning PTVs, there were no significant differences for target coverage (D95%); mean doses for ipsilateral lung and controlateral breast, and V18 Gy for heart decreased with MUs increasing, reaching a plateau with reference plan. Body volume receiving low dose (V5-10 Gy) was minimized for reference plans. All plans had GAI (3 mm, 3%) > 95%. CONCLUSIONS: The data suggest that the best plan is the reference one, where the "MU Objective" tool was not used during optimisation. Nevertheless, it is advisable to use the "MU Objective" tool for re-planning when low GAI is found to increase its value. In this case, attention should be paid to OARs dose limits, since their values may be increased.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Órgãos em Risco/efeitos da radiação , Controle de Qualidade , Radiometria , Radioterapia de Intensidade Modulada/efeitos adversos , Estudos Retrospectivos
8.
Biophys J ; 86(2): 1118-23, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747346

RESUMO

This work deals with a dielectric study at radio frequencies of the influence at room temperature of two organic molecules, known as cryo-protectants, ethylene-glycol and glycerol, on conformational and dynamic properties of two model proteins, lysozyme (lys) from chicken egg-white and ferricytochrome-c (cyt-c) from horse heart. Cyt-c is a compact globular protein whereas lys is composed of two structural domains, separated by the active site cleft. Measurements were carried out at the fixed temperature of 20 degrees C varying the concentration of the cosolvent up to 90% w/w. From the analysis of the dielectric relaxation of the protein solution, the effective hydrodynamic radius and the electric dipole moment of the protein were calculated as a function of the cosolvent concentration. The data show that glycerol does not modify significantly the conformation of both proteins and cyt-c is also stable in the presence of ethylene-glycol. On the contrary ethylene-glycol strongly affects the dielectric response of lysozyme denoting a specific effect on its conformation and dynamics. The data are coherently interpreted hypothesizing that glycol molecule wedges between and separates the two domains of lys making them rotationally independent.


Assuntos
Citocromos c/química , Etilenoglicol/química , Muramidase/química , Análise Espectral/métodos , Água/química , Animais , Galinhas , Misturas Complexas/química , Condutividade Elétrica , Cavalos , Miocárdio/enzimologia , Conformação Proteica , Estrutura Terciária de Proteína , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...