Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2430, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499534

RESUMO

Two-dimensional (2D) materials are considered for numerous applications in microelectronics, although several challenges remain when integrating them into functional devices. Weak adhesion is one of them, caused by their chemical inertness. Quantifying the adhesion of 2D materials on three-dimensional surfaces is, therefore, an essential step toward reliable 2D device integration. To this end, button shear testing is proposed and demonstrated as a method for evaluating the adhesion of 2D materials with the examples of graphene, hexagonal boron nitride (hBN), molybdenum disulfide, and tungsten diselenide on silicon dioxide and silicon nitride substrates. We propose a fabrication process flow for polymer buttons on the 2D materials and establish suitable button dimensions and testing shear speeds. We show with our quantitative data that low substrate roughness and oxygen plasma treatments on the substrates before 2D material transfer result in higher shear strengths. Thermal annealing increases the adhesion of hBN on silicon dioxide and correlates with the thermal interface resistance between these materials. This establishes button shear testing as a reliable and repeatable method for quantifying the adhesion of 2D materials.

2.
Beilstein J Nanotechnol ; 8: 296-303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243568

RESUMO

Biomaterials are used as model systems for the deposition of functional inorganic materials under mild reaction conditions where organic templates direct the deposition process. In this study, this principle was adapted for the formation of piezoelectric ZnO thin films. The influence of two different organic templates (namely, a carboxylate-terminated self-assembled monolayer and a sulfonate-terminated polyelectrolyte multilayer) on the deposition and therefore on the piezoelectric performance was investigated. While the low negative charge of the COOH-SAM is not able to support oriented attachment of the particles, the strongly negatively charged sulfonated polyelectrolyte leads to texturing of the ZnO film. This texture enables a piezoelectric performance of the material which was measured by piezoresponse force microscopy. This study shows that it is possible to tune the piezoelectric properties of ZnO by applying templates with different functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...