Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(37): 13948-13958, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37671477

RESUMO

Humic-like substances (HULIS), known for their substantial impact on the atmosphere, are identified in marine diesel engine emissions obtained from five different fuels at two engine loads simulating real world scenarios as well as the application of wet sulfur scrubbers. The HULIS chemical composition is characterized by electrospray ionization (ESI) ultrahigh resolution mass spectrometry and shown to contain partially oxidized alkylated polycyclic aromatic compounds as well as partially oxidized aliphatic compounds, both including abundant nitrogen- and sulfur-containing species, and clearly different to HULIS emitted from biomass burning. Fuel properties such as sulfur content and aromaticity as well as the fuel combustion efficiency and engine mode are reflected in the observed HULIS composition. When the marine diesel engine is operated below the optimum engine settings, e.g., during maneuvering in harbors, HULIS-C emission factors are increased (262-893 mg kg-1), and a higher number of HULIS with a shift toward lower degree of oxidation and higher aromaticity is detected. Additionally, more aromatic and aliphatic CHOS compounds in HULIS were detected, especially for high-sulfur fuel combustion. The application of wet sulfur scrubbers decreased the HULIS-C emission factors by 4-49% but also led to the formation of new HULIS compounds. Overall, our results suggest the consideration of marine diesel engines as a relevant regional source of HULIS emissions.


Assuntos
Atmosfera , Navios , Biomassa , Substâncias Húmicas , Enxofre
2.
Environ Toxicol Pharmacol ; 98: 104079, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796551

RESUMO

Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Tamanho da Partícula , Pulmão , Células Epiteliais , Hidrocarbonetos Policíclicos Aromáticos/análise , Inflamação/metabolismo , Dano ao DNA , Materiais de Construção , Fibroblastos
3.
Toxicol Mech Methods ; 33(5): 411-426, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36519334

RESUMO

Particularly since the wide-ranging health effects of asbestos exposure became known, great emphasis has been placed on detailed toxicity testing of known but also newly developed fiber materials. Exposure to respirable pollutants like fibers can lead to tissue injury causing lung diseases such as pulmonary fibrosis or cancer. In order to detect the toxic potential of such aerosols at an early stage, the development of suitable test systems is essential. In this study, we illustrate the development of an advanced in vitro cell model closely resembling the physiological structure of the alveoli, and we highlight its advantages over simpler models to predict pro-fibrotic changes. For this reason, we analyzed the cytotoxic effects of fiber-like multi-walled carbon nanotubes after 24 and 48 h exposure, and we investigated inflammatory, genotoxic and pro-fibrotic changes occurring in the developed triple culture consisting of lung epithelial cells, macrophages and fibroblasts compared to a co-culture of epithelial cells and fibroblasts or a mono culture of epithelial cells. In summary, the triple culture system is more precisely able to detect a pro-fibrotic phenotype including epithelial-mesenchymal transition as well as secondary genotoxicity, even if exhibiting lower cytotoxicity in contrast to the less advanced systems. These effects might be traced back to the complex interplay between the different cell types, all of which play an important role in the inflammatory response, which precedes wound healing, or even fibrosis or cancer development.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Aerossóis e Gotículas Respiratórios , Pulmão , Comunicação Celular
4.
Environ Pollut ; 316(Pt 1): 120526, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341831

RESUMO

The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Aerossóis , Poluentes Atmosféricos/análise , Gasolina/análise , Material Particulado/análise , Enxofre/análise , Emissões de Veículos/análise
5.
Rapid Commun Mass Spectrom ; 35(2): e8863, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32557743

RESUMO

RATIONALE: Fast and sensitive detection of aromatic hydrocarbons (AHs) in water is of high importance because of their significant impact on human health and the environment. For this, resonance-enhanced multiphoton ionization (REMPI) coupled to trap-and-release membrane-introduction mass spectrometry (T&R-MIMS) offers the possibility of sensitive on-line water analysis with a time resolution of minutes. METHODS: REMPI is a versatile tool for sensitive gas-phase analysis, in which AHs are selectively ionized in complex gas mixtures by the subsequent absorption of at least two photons. In T&R-MIMS, selective extraction and enrichment of analytes from water can be achieved using semipermeable membranes. By the subsequent stimulated desorption of enriched compounds, mass spectrometric detection is enabled. RESULTS: We present an external T&R inlet for hollow-fiber membranes coupled to REMPI time-of-flight mass spectrometry, which enables direct and sensitive detection of semi-volatile AHs in water. In laboratory experiments, spiked water samples were analyzed. For the investigated compounds, limits of detection (LODs) in the range 1-47 ng/L were determined. The LODs are approximately one order of magnitude lower than in a previously reported continuous membrane-introduction approach using a planar membrane. Further improvement of LOD may be realized by extending the trapping time and by increasing the release temperature. Furthermore, the system was applied to investigate different fuels suspended in water and real water samples. The obtained data are in good agreement with findings of a former study. CONCLUSIONS: In the framework of the present study, we demonstrate the high potential of the combination of REMPI and T&R-MIMS in the form of a newly developed external hollow-fiber membrane inlet. With the developed system, semi-volatile AHs can be directly detected down to ng/L levels on a minute time scale. The approach thus may pave the way to future ship application in marine sciences, natural resources exploration or pollutant and hazard detection.

6.
J Am Soc Mass Spectrom ; 31(11): 2362-2369, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959652

RESUMO

The rising demand for more and more specialized polyethylene represents a challenge for synthesis and analysis. The desired properties are dependent on the structure, but its elucidation is still intricate. For this purpose, we applied thermal analysis hyphenated to single photon ionization mass spectrometry (STA-SPI-MS). The melting and pyrolysis behavior of different types of polyethylene were tracked by DSC and mass loss. Crystallinity and melting point give hints about the branching but are also influenced by the molecular weight distribution. The evolving gas analysis patterns obtained by SPI-MS however, contain specific molecular information about the samples. Shifts in the summed spectra, which can be clearly observed with our technique, result from differently favored degradation reactions due to the respective structure. Pyrolysis gas chromatography mass spectrometry (Py-GC-EI-MS) was used to support the assignment of pyrolysis products. Principal component analysis was successfully applied to reduce the complexity of data and find suitable markers. The obtained grouping is based on the molecular fingerprint of the samples and is strongly influenced by short-chain branching. Short and medium alkenes and dienes have the strongest impact on the first four principal components. Thus, two marker ratios could be defined, which also give a comprehensible and robust grouping. Butene and pentene were the most abundant signals in our set of samples. With STA-PI-MS, a broad range of pyrolysis products can be measured at the same time, possibly extending the range for quantifiable short-chain branches to more than six carbon atoms for PE. Unfortunately, no clear trend between long-chain branching and any grouping was observed. The quite universal and soft single photon ionization enables access to many different compound classes and hence other polymers can be studied.

7.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539833

RESUMO

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Picea/química , Pinus/química , Fumaça/efeitos adversos , Madeira , Células A549 , Aerossóis , Poluentes Atmosféricos/análise , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Calefação , Humanos , Exposição por Inalação/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Células RAW 264.7 , Fumaça/análise , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos
8.
Waste Manag ; 106: 226-239, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240939

RESUMO

In the context of waste upgrading of polyethylene terephthalate (PET) by pyrolysis, this study presents three on-line mass spectrometric techniques with soft ionization for monitoring the emitted decomposition products and their thermal dependent evolution profiles. Pyrolysis experiments were performed using a thermogravimetric analyzer (TGA) under nitrogen atmosphere with a heating rate of 5 °C/min from 30 °C to 600 °C. Single-photon ionization (SPI at 118 nm/10.5 eV) and resonance enhanced multiple photon ionization (REMPI at 266 nm) were used with time-of-flight mass spectrometry (TOF-MS) for evolved gas analysis (TGA-SPI/REMPI-TOFMS). Additionally, the chemical signature of the pyrolysis products was investigated by atmospheric pressure chemical ionization (APCI) ultra high resolution Fourier Transform ion cyclotron resonance mass spectrometry (FT-ICR MS) which enables assignment of molecular sum formulas (TGA-APCI FT-ICR MS). Despite the soft ionization by SPI, the fragmentation of some compounds with the loss of the [O-CH = CH2] fragment is observed. The major compounds were acetaldehyde (m/z 44), benzoic acid (m/z 122) and a fragment of m/z 149. Using REMPI, aromatic species were selectively detected. Several series of pyrolysis products were observed in different temperature intervals, showing the presence of polycyclic aromatic hydrocarbons (PAHs), especially at high temperatures. FT-ICR MS data showed, that the CHO4 class was the most abundant compound class with a relative abundance of 45.5%. The major compounds detected with this technique corresponded to m/z 193.0495 (C10H9O4+) and 149.0233 (C8H5O3+). Based on detailed chemical information, bulk reaction pathways are proposed, showing the formation of both cyclic monomer/dimer and linear structures.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Polietilenotereftalatos , Calefação , Espectrometria de Massas , Pirólise
9.
Anal Chem ; 91(24): 15547-15554, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31735029

RESUMO

The development of sensitive analytical techniques for the real-time detection of aromatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) is of high importance, because of their impact on human health and the environment. A promising approach, regarding to direct determination of (P)AHs in aqueous samples, is resonance-enhanced multiphoton ionization (REMPI) coupled to external-membrane introduction mass spectrometry (eMIMS). In eMIMS, analytes are extracted from the water phase into the gas phase, which is supplied to the MS by using an external semipermeable membrane setup. As a result, no laborious enrichment techniques are needed. With REMPI, ions are formed by the subsequent absorption of two photons via an excited molecular state. The unique ionization scheme of REMPI provides selective and sensitive detection of (P)AHs. When combining the capabilities of REMPI and MIMS, direct measurements of sub-µg/L concentrations of small (polycyclic)aromatic compounds are feasible. In this study, we present an external sheet membrane probe (ESMP) for the determination of selected (polycyclic)aromatic species in water samples by using REMPI time-of-flight mass spectrometry (REMPI-TOFMS). This inlet design shows promising results with respect to the direct analysis of (P)AHs in aquatic environments. With this early stage system, concentrations down to tens of ng/L for selected small (polycyclic)aromatic compounds are accessible within minutes without any sample preparation.

10.
Sci Total Environ ; 686: 382-392, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181524

RESUMO

The combustion of spruce logwood in a modern residential stove was found to emit polycyclic aromatic hydrocarbons (PAH) and oxygenated polycyclic aromatic hydrocarbons (OPAH) with emission factors of 404 µg MJ-1 of 35 analysed PAH, 317 µg MJ-1 of 11 analysed Oxy-PAH and 12.5 µg MJ-1 of 5 analysed OH-PAH, most of which are known as potential mutagens and carcinogens. Photochemical ageing in an oxidation flow reactor (OFR) degraded particle-bound PAH, which was also reflected in declining PAH toxicity equivalent (PAH-TEQ) values by 45 to 80% per equivalent day of photochemical ageing in the atmosphere. OPAH concentrations decreased less than PAH concentrations during photochemical ageing, supposedly due to their secondary formation, while 1-hydroxynaphthalene, 1,5-dihydroxynaphthalene and 1,8-naphthalaldehydic acid were significantly increased after ageing. Furthermore, secondary organic aerosol (SOA) formation and aromatic compounds not included in targeted analysis were investigated by thermal-optical carbon analysis (TOCA) hyphenate to resonance-enhanced multi-photon ionisation time-of-flight mass spectrometry (REMPI-TOFMS). The commonly used PAH-source indicators phenanthrene/anthracene, fluoranthene/pyrene, retene/chrysene, and indeno[cd]pyrene/benzo[ghi]perylene remained stable during photochemical ageing, enabling identification of wood combustion emissions in ambient air. On the other hand, benz[a]pyrene/benz[e]pyrene and benz[a]anthracene/chrysene were found to decrease with increasing photochemical age. Retene/chrysene was not a proper classifier for the wood combustion emissions of this study, possibly due to more efficient combustion than in open wood burning, from which this diagnostic ratio was initially derived. This study motivates in-depth investigation of degradation kinetics of particle-bound species on different combustion aerosol as well as the consequences of photochemical ageing on toxicity and identification of wood combustion emissions in ambient air.

11.
Sci Total Environ ; 612: 636-648, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28866392

RESUMO

Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe.

12.
Environ Sci Pollut Res Int ; 24(12): 10976-10991, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27137191

RESUMO

Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.


Assuntos
Aerossóis , Poluentes Atmosféricos/análise , Óleos Combustíveis , Gasolina , Navios , Emissões de Veículos/análise , Humanos , Material Particulado
13.
PLoS One ; 11(6): e0157964, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348622

RESUMO

Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.


Assuntos
Óleos Combustíveis/toxicidade , Gasolina/toxicidade , Macrófagos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Linhagem Celular , Macrófagos/metabolismo , Camundongos
14.
Mar Pollut Bull ; 99(1-2): 35-42, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26277803

RESUMO

Polycyclic aromatic hydrocarbons (PAH), as a part of dissolved organic matter (DOM), are environmental pollutants of the marine compartment. This study investigates the origin of PAH, which is supposed to derive mainly from anthropogenic activities, and their alteration along the salinity gradient of the Baltic Sea. Pyrolysis in combination with gas chromatography and two mass selective detectors in one measurement cycle are utilized as a tool for an efficient trace analysis of such complex samples, by which it is possible to detect degradation products of high molecular structures. Along the north-south transect of the Baltic Sea a slightly rising trend for PAH is visible. Their concentration profiles correspond to the ship traffic as a known anthropogenic source, underlined by the value of special isomer ratios such as phenanthrene and anthracene (0.31-0.45) or pyrene and fluoranthene (0.44-0.53). The detection of naphthalene and the distribution of its alkylated representatives support this statement.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Antracenos/análise , Países Bálticos , Elétrons , Monitoramento Ambiental/métodos , Fluorenos/análise , Oceanos e Mares , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos/análise
15.
PLoS One ; 10(6): e0126536, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039251

RESUMO

BACKGROUND: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. OBJECTIVES: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. METHODS: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. RESULTS: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot"). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. CONCLUSIONS: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.


Assuntos
Endocitose/efeitos dos fármacos , Gasolina , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Linhagem Celular Tumoral , Humanos , Pulmão/patologia , Navios
16.
Anal Bioanal Chem ; 407(20): 5965-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25772565

RESUMO

Ship diesel combustion particles are known to cause broad cytotoxic effects and thereby strongly impact human health. Particles from heavy fuel oil (HFO) operated ships are considered as particularly dangerous. However, little is known about the relevant components of the ship emission particles. In particular, it is interesting to know if the particle cores, consisting of soot and metal oxides, or the adsorbate layers, consisting of semi- and low-volatile organic compounds and salts, are more relevant. We therefore sought to relate the adsorbates and the core composition of HFO combustion particles to the early cellular responses, allowing for the development of measures that counteract their detrimental effects. Hence, the semi-volatile coating of HFO-operated ship diesel engine particles was removed by stepwise thermal stripping using different temperatures. RAW 264.7 macrophages were exposed to native and thermally stripped particles in submersed culture. Proteomic changes were monitored by two different quantitative mass spectrometry approaches, stable isotope labeling by amino acids in cell culture (SILAC) and dimethyl labeling. Our data revealed that cells reacted differently to native or stripped HFO combustion particles. Cells exposed to thermally stripped particles showed a very differential reaction with respect to the composition of the individual chemical load of the particle. The cellular reactions of the HFO particles included reaction to oxidative stress, reorganization of the cytoskeleton and changes in endocytosis. Cells exposed to the 280 °C treated particles showed an induction of RNA-related processes, a number of mitochondria-associated processes as well as DNA damage response, while the exposure to 580 °C treated HFO particles mainly induced the regulation of intracellular transport. In summary, our analysis based on a highly reproducible automated proteomic sample-preparation procedure shows a diverse cellular response, depending on the soot particle composition. In particular, it was shown that both the molecules of the adsorbate layer as well as particle cores induced strong but different effects in the exposed cells.


Assuntos
Óleos Combustíveis/análise , Óleos Combustíveis/toxicidade , Macrófagos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Linhagem Celular , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Proteômica , Navios , Fuligem/análise , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Fluxo de Trabalho
17.
Anal Bioanal Chem ; 407(20): 5939-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25600686

RESUMO

Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

18.
Anal Chem ; 87(3): 1711-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25582882

RESUMO

The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.


Assuntos
Processamento de Imagem Assistida por Computador , Espectrometria de Massas/métodos , Nicotiana/química , Óxido Nítrico/biossíntese , Fumaça/análise , Volatilização , Temperatura Alta , Cinética
19.
Anal Chim Acta ; 855: 60-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25542090

RESUMO

A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1+1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI-ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a significant role for the increase of efficiency in the processing of petroleum.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25014345

RESUMO

Process analysis is an emerging discipline in analytical sciences that poses special requirements on analytical techniques, especially when conducted in an online manner. Mass spectrometric methods seem exceedingly suitable for this task, particularly if a soft ionization method is applied. Resonance-enhanced multiphoton ionization (REMPI) in combination with time-of-flight mass spectrometry (TOFMS) provides a selective and sensitive means for monitoring (poly)aromatic compounds in process flows. The properties of REMPI and various variations of the ionization process are presented. The potential of REMPI for process analysis is highlighted with several examples, and drawbacks of the method are also noted. Applications of REMPI-TOFMS for the detection and monitoring of aromatic species in a large variety of combustion processes comprising flames, vehicle exhaust, and incinerators are discussed. New trends in technical development and combination with other analytical methods are brought forward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...