Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675948

RESUMO

The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.


Assuntos
Vírus de RNA , Animais , Abelhas/virologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Vírus de RNA/patogenicidade , Genótipo , Interações Hospedeiro-Patógeno
2.
Insects ; 15(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276825

RESUMO

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

3.
Proc Biol Sci ; 289(1969): 20212255, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35168401

RESUMO

Cross-species transmission of a pathogen from a reservoir to a recipient host species, spillover, can have major impacts on biodiversity, domestic species and human health. Deformed wing virus (DWV) is a panzootic RNA virus in honeybees that is causal in their elevated colony losses, and several correlative field studies have suggested spillover of DWV from managed honeybees to wild bee species such as bumblebees. Yet unequivocal demonstration of DWV spillover is lacking, while spillback, the transmission of DWV from a recipient back to the reservoir host, is rarely considered. Here, we show in fully crossed laboratory experiments that the transmission of DWV (genotype A) from honeybees to bumblebees occurs readily, yet we neither detected viral transmission from bumblebees to honeybees nor onward transmission from experimentally infected to uninoculated bumblebees. Our results support the potential for viral spillover from honeybees to other bee species in the field when robbing resources from heterospecific nests or when visiting the same flowers. They also underscore the importance of studies on the virulence of DWV in wild bee species so as to evaluate viral impact on individual and population fitness as well as viral adaption to new host species.


Assuntos
Vírus de RNA , Animais , Abelhas , Genótipo , Vírus de RNA/genética , Virulência
4.
Microorganisms ; 9(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920692

RESUMO

Adult honey bees host a remarkably consistent gut microbial community that is thought to benefit host health and provide protection against parasites and pathogens. Currently, however, we lack experimental evidence for the causal role of the gut microbiota in protecting the Western honey bees (Apis mellifera) against their viral pathogens. Here we set out to fill this knowledge gap by investigating how the gut microbiota modulates the virulence of a major honey bee viral pathogen, deformed wing virus (DWV). We found that, upon oral virus exposure, honey bee survival was significantly increased in bees with an experimentally established normal gut microbiota compared to control bees with a perturbed (dysbiotic) gut microbiota. Interestingly, viral titers were similar in bees with normal gut microbiota and dysbiotic bees, pointing to higher viral tolerance in bees with normal gut microbiota. Taken together, our results provide evidence for a positive role of the gut microbiota for honey bee fitness upon viral infection. We hypothesize that environmental stressors altering honey bee gut microbiota composition, e.g., antibiotics in beekeeping or pesticides in modern agriculture, could interact synergistically with pathogens, leading to negative effects on honey bee health and the epidemiology and impact of their viruses.

5.
R Soc Open Sci ; 7(7): 200480, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874644

RESUMO

Pathogen spillover represents an important cause of biodiversity decline. For wild bee species such as bumblebees, many of which are in decline, correlational data point towards viral spillover from managed honeybees as a potential cause. Yet, impacts of these viruses on wild bees are rarely evaluated. Here, in a series of highly controlled laboratory infection assays with well-characterized viral inocula, we show that three viral types isolated from honeybees (deformed wing virus genotype A, deformed wing virus genotype B and black queen cell virus) readily replicate within hosts of the bumblebee Bombus terrestris. Impacts of these honeybee-derived viruses - either injected or fed - on the mortality of B. terrestris workers were, however, negligible and probably dependent on host condition. Our results highlight the potential threat of viral spillover from honeybees to novel wild bee species, though they also underscore the importance of additional studies on this and other wild bee species under field-realistic conditions to evaluate whether pathogen spillover has a negative impact on wild bee individuals and population fitness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...