Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 6(8): e10661, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991529

RESUMO

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by ectopic production of fibroblast growth factor 23 (FGF23) by phosphaturic mesenchymal tumors (PMTs). Acting on renal tubule cells, excess FGF23 decreases phosphate reabsorption and 1,25-dihydroxy-vitamin D (1,25D) production, leading to hypophosphatemia, impaired bone mineralization, pain, and fractures. Fibronectin 1-fibroblast growth factor receptor 1 (FN1-FGFR1) gene fusions have been identified as possible drivers in up to 40% of resected PMTs. Based on the presumptive role of FGFR1 signaling by chimeric FN1-FGFR1 proteins, the effectiveness of infigratinib, a FGFR1-3 tyrosine kinase inhibitor, was studied in an open-label, single-center, phase 2 trial. The primary endpoint was persistent normalization of blood phosphate and FGF23 after discontinuation. Four adults with TIO (two nonlocalized, two nonresectable PMTs) were treated with daily infigratinib for up to 24 weeks. All patients had a favorable biochemical response that included reduction in intact FGF23, and normalization of blood phosphate and 1,25D. However, these effects disappeared after drug discontinuation with biochemistries returning to baseline; no patients entered biochemical remission. In the two patients with identifiable tumors, 68Gallium (68Ga)-DOTATATE and 18Fluoride (18F)-Fluorodeoxyglucose (FDG) PET/CT scans showed a decrease in PMT activity without change in tumor size. Patients experienced mild to moderate, treatment-related, dose-limiting adverse events (AEs), but no serious AEs. Three patients had dose interruptions due to AEs; one patient continued on a low dose for the entire 24 weeks and one patient stopped therapy at 17 weeks due to an AE. The study closed early due to a failure to meet the primary endpoint and a higher-than-expected incidence of ocular AEs. Infigratinib treatment lowered FGF23, increased blood phosphate, and suppressed PMT activity, confirming the role of FGFR signaling in PMT pathogenesis. However, treatment-related AEs at efficacy doses and disease persistence on discontinuation support restricting the use of infigratinib to patients with life-limiting metastatic PMTs. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

4.
J Bone Miner Res ; 34(9): 1609-1618, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063613

RESUMO

Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism caused by heterozygous, gain-of-function mutations of the calcium-sensing receptor gene (CAR). Individuals are hypocalcemic with inappropriately low parathyroid hormone (PTH) secretion and relative hypercalciuria. Calcilytics are negative allosteric modulators of the extracellular calcium receptor (CaR) and therefore may have therapeutic benefits in ADH1. Five adults with ADH1 due to four distinct CAR mutations received escalating doses of the calcilytic compound NPSP795 (SHP635) on 3 consecutive days. Pharmacokinetics, pharmacodynamics, efficacy, and safety were assessed. Parallel in vitro testing with subject CaR mutations assessed the effects of NPSP795 on cytoplasmic calcium concentrations (Ca2+i ), and ERK and p38MAPK phosphorylation. These effects were correlated with clinical responses to administration of NPSP795. NPSP795 increased plasma PTH levels in a concentration-dependent manner up to 129% above baseline (p = 0.013) at the highest exposure levels. Fractional excretion of calcium (FECa) trended down but not significantly so. Blood ionized calcium levels remained stable during NPSP795 infusion despite fasting, no calcitriol supplementation, and little calcium supplementation. NPSP795 was generally safe and well-tolerated. There was significant variability in response clinically across genotypes. In vitro, all mutant CaRs were half-maximally activated (EC50 ) at lower concentrations of extracellular calcium (Ca2+o ) compared to wild-type (WT) CaR; NPSP795 exposure increased the EC50 for all CaR activity readouts. However, the in vitro responses to NPSP795 did not correlate with any clinical parameters. NPSP795 increased plasma PTH levels in subjects with ADH1 in a dose-dependent manner, and thus, serves as proof-of-concept that calcilytics could be an effective treatment for ADH1. Albeit all mutations appear to be activating at the CaR, in vitro observations were not predictive of the in vivo phenotype or the response to calcilytics, suggesting that other parameters impact the response to the drug. © 2019 American Society for Bone and Mineral Research.


Assuntos
Compostos de Cálcio/uso terapêutico , Hipercalciúria/tratamento farmacológico , Hipocalcemia/tratamento farmacológico , Hipoparatireoidismo/congênito , Adulto , Área Sob a Curva , Compostos de Cálcio/efeitos adversos , Compostos de Cálcio/farmacocinética , Linhagem Celular , Feminino , Genótipo , Humanos , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/tratamento farmacológico , Hipoparatireoidismo/genética , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...