Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1465-1477, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297697

RESUMO

High power and high brightness laser lighting puts forward new requirements for phosphor converters such as high luminous efficiency, high thermal conductivity and high saturation threshold due to the severe thermal effect. The structure design of phosphor converters is proposed as what we believe to be a novel strategy for less heat production and more heat conduction. In this work, the rod-shaped YAG:Ce phosphor ceramics (PCs) and disc-shaped YAG:Ce PCs as control group were fabricated by the gel casting and vacuum sintering, to comparatively study the luminescence performance for LD lighting, on the premise that the total number of transverse Ce3+ ions and the volume of samples from two comparison groups were same. All rod YAG:Ce PCs with low Ce3+ concentration exhibited the high luminous efficiency and better thermal stability than YAG:Ce discs with high Ce3+ concentration. Under the laser power density of 47.8 W/mm2, the luminous saturation was never observed in all rod-shaped YAG:Ce PCs. The high luminous efficacy of 245∼274 lm/W, CRI of 56.3∼59.5 and CCT of 4509∼4478 K were achieved. More importantly, due to the extremely low Ce3+ doping concentration (0.01 at%), rod-shaped ceramics based LDs devices showed the excellent thermal performance and their surface temperatures were even below 30.5 °C surprisingly under the laser power density of 20.3 W·mm-2 (2 W). These results indicate that the rod shape of phosphor converter is a promising structure engineering for high power laser lighting.

2.
Opt Express ; 32(2): 2644-2657, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297788

RESUMO

Lu3Al5O12:Ce (LuAG:Ce) phosphor ceramics (PCs) with the excellent thermal stability and high saturation threshold are considered as the best green-fluorescent converters for high-power laser diodes (LDs) lighting. In this study, the effects of sintering additives and sintering processes on the transmittance and microstructure of LuAG:Ce PCs were systematically studied, and the luminescence performance of ceramics with different transmittance was compared. LuAG:Ce PCs with the transmittance of 80% (@800 nm, 1.5 mm) were obtained by using 0.1 wt.% MgO and 0.5 wt.% TEOS as sintering additives, combined with optimized vacuum pre-sintering and hot isostatic pressing. Compared to the non-HIP samples, the transmittance had increased by 11%. The microstructure of ceramics indicated that high transparency was closely related to the decrease in intergranular pores. Notably, the luminous efficiency of 253 lm/W and its saturation thresholds of > 46 W/mm2 were obtained simultaneously in green-emitting LDs devices. Moreover, under 3W laser irradiation, highly transparent ceramics had the low surface temperature of 66.4 °C, indicating the good heat dissipation performance. The observed high luminous efficiency and high saturation threshold of LuAG:Ce PCs were attributed to fewer pores and oxygen vacancies. Therefore, this work proves that highly transparent LuAG:Ce PCs are promising green-fluorescent converters for high-power LDs lighting.

3.
Opt Express ; 31(25): 41556-41568, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087551

RESUMO

The realization of high front light emission in laser lighting under transmissive modes is heavily constrained by low thermal stability and light extraction efficiency of color converter materials. Therefore, it is necessary to improve the heat dissipation capacity and light utilization efficiency of the color converter through appropriate microstructural adjustments. In this study, what we believe to be a novel laminated structure consisting of Al2O3 and YAG:Ce was designed and fabricated for transmissive laser lighting. Through this design, it was possible to change the phosphor emission angle, overcoming the limitations of total internal reflection and enabling maximal emission of yellow phosphor from the ceramic surface. This laminated structure enhanced the front light emission efficiency by 24.4% compared to composite ceramic phosphor. In addition, the thermal conduction area between the phosphor layer and the heat dissipation layer have been effectively enhanced. Ultimately, under a high-power density of 47.6 W/mm2, all ceramics showed no luminous saturation threshold. A high-brightness front light with a luminous flux of 651 lm, a luminous efficiency of 144 lm/W, a correlated color temperature of 6419 K and the operating temperature as low as 84.9 °C was obtained. These results suggest that laminated structural Al2O3/YAG:Ce composite ceramic is a promising candidate for transmissive mode laser lighting.

4.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630425

RESUMO

In this study, graphene flakes were obtained using an electrolytic method and characterized using X-ray diffraction (XRD), Raman and FTIR spectroscopy, scanning and transmission electron microscopy (SEM/TEM). Graphene-based composites with varying concentrations of 0.5%, 1% and 3% by weight were prepared with acrylic paint, enamel and varnish matrices. The mechanical properties were evaluated using micro-hardness testing, while wettability and antimicrobial activity against three pathogens (Staphylococcus aureus 33591, Pseudomonas aeruginosa 15442, Candida albicans 10231) were also examined. The results indicate that the addition of graphene flakes significantly enhances both the mechanical and antimicrobial properties of the coatings.


Assuntos
Grafite , Pintura , Candida albicans , Eletrólise , Grafite/química , Grafite/farmacologia , Anti-Infecciosos , Staphylococcus aureus , Pseudomonas aeruginosa
5.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513198

RESUMO

This paper demonstrates the generation of broadband emission in the visible and infrared ranges induced by a concentrated beam of infrared radiation from CsPbBr3 ceramics doped with Yb3+ ions. The sample was obtained by the conventional solid-state reaction method, and XRD measurements confirmed the phase purity of the material crystallizing in the orthorhombic system. Spectroscopic measurements required further sample preparation in the form of ceramics using a high-pressure press. The research showed that as the excitation power increases, the emission intensity does not increase linearly from the beginning of the experiment. Irradiation of the material results in the accumulation of the delivered energy. Absorption of a sufficient number of photons triggers avalanche emission. It was found that the most intense luminescence is produced in a vacuum. Changes in conductivity were also observed, where the excitation was able to lower the resistivity of the material and it was highly dependent on the excitation power. The mechanism responsible for the generation of the observed phenomenon involving intervalence charge transfer (IVCT) transitions has been postulated.

6.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984068

RESUMO

Graphene nanoplatelets (GNPs) were prepared using the electrolytic exfoliation method on graphite foil in an ammonium sulfate solution. A series of experiments were conducted in order to optimize the production of the flakes by varying the pH of the solution, applied voltage and current, duration of electrolysis, temperature in the electrolytic system, and type and duration of the ultrasound interaction. The quality of the produced graphene nanoplatelets was analyzed using X-ray diffraction, Raman and IR spectroscopy, and TEM.

7.
Dalton Trans ; 52(7): 2073-2079, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692330

RESUMO

The synthesis and structural characteristics of nanocrystalline LaAlO3 perovskites doped with different concentrations of Nd3+ ions are reported. Their excitation and Stokes emission spectra, in which significant concentration quenching was observed, were recorded and characterized. The measurements of anti-Stokes laser induced white emission (LIWE) spectra were also performed. It was found that the LIWE intensity increased exponentially with the excitation laser power above the excitation threshold. In particular, the concentration and pressure dependences of the LIWE spectra of La1-xNdxAlO3 were investigated. Despite the pronounced concentration quenching observed in the Stokes emission, no such effect could be observed in the anti-Stokes one. A possible inter-valence charge transfer (IVCT) mechanism for the white emission, in which different bands that were observed correspond to different valences of Nd, is proposed.

8.
Materials (Basel) ; 15(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35806532

RESUMO

In the current work, YAGG:Cr3+ nanophosphors were synthesized by the Pechini method and then annealed at different temperatures in the range 800-1300 °C. The structure and morphology of the samples were characterized by X-ray Powder Diffraction (XRPD). The lattice parameters and average crystalline sizes as site occupation by Al3+ and Ga3+ ions were calculated from the Rietveld refinement data. To investigate the effect of crystalline size of the materials on their optical properties: excitation and emission spectra were recorded and analyzed. Finally, the effect of crystalline size on the probability of carrier recombination leading to PersL was determined experimentally with thermoluminescence analyses. The Tmax-Tstop method was applied to determine the trap type and particle size (calcination temperature) effect on their redistribution. A correlation between structural changes and trap redistribution was found. In particular, the extinction of high-temperature TL maximum with increasing annealing temperatures is observed, while low-temperature TL maximum increases and reaches a maximum when the lattice parameter reaches saturation.

9.
Sci Rep ; 12(1): 9327, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35665755

RESUMO

Additive manufacturing transforms the landscape of modern microelectronics. Recent years have witnessed significant progress in the fabrication of 2D planar structures and free-standing 3D architectures. In this work, we present a much-needed intermediary approach: we introduce the Ultra-Precise Deposition (UPD) technology, a versatile platform for material deposition at micrometer scale on complex substrates. The versality of this approach is related to three aspects: material to be deposited (conductive or insulating), shape of the printed structures (lines, dots, arbitrary shapes), as well as type and shape of the substrate (rigid, flexible, hydrophilic, hydrophobic, substrates with pre-existing features). The process is based on the direct, maskless deposition of high-viscosity materials using narrow printing nozzles with the internal diameter in the range from 0.5 to 10 µm. For conductive structures we developed highly concentrated non-Newtonian pastes based on silver, copper, or gold nanoparticles. In this case, the feature size of the printed structures is in the range from 1 to 10 µm and their electrical conductivity is up to 40% of the bulk value, which is the record conductivity for metallic structures printed with spatial resolution below 10 µm. This result is the effect of the synergy between the printing process itself, formulation of the paste, and the proper sintering of the printed structures. We demonstrate a pathway to print such fine structures on complex substrates. We argue that this versatile and stable process paves the way for a widespread use of additive manufacturing for microfabrication.

10.
Molecules ; 27(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163983

RESUMO

A new method of hydrogen generation from water, by irradiation with CW infrared laser diode of graphene scaffold immersed in solution, is reported. Hydrogen production was extremely efficient upon admixing NaCl into water. The efficiency of hydrogen production increased exponentially with laser power. It was shown that hydrogen production was highly efficient when the intense white light emission induced by laser irradiation of graphene foam was occurring. The mechanism of laser-induced dissociation of water is discussed. It was found that hydrogen production was extremely high, at about 80%, and assisted by a small emission of O2, CO and CO2 gases.

11.
Adv Mater ; 34(11): e2106368, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34891218

RESUMO

The irradiation of an optically absorptive medium by a continuous-wave (CW) near-infrared (NIR) laser can result in a spectral continuum emission covering both the visible and NIR regions, which is attractive for applications as continuum light sources in diverse fields. It is shown here that this NIR-laser-driven light emission can be effectively modulated with nanoscale architecture in the medium. By using porous silica as the model matrix and Yb3+ ions as the photothermally active centers, up to 100 folds increment in NIR-laser-induced emission intensity and dramatic decrease in threshold excitation density are demonstrated. It is observed that the emission intensity exhibits a strong nonlinear dependence on the power of the NIR excitation laser, featuring clear excitation power thresholds. Based on combined numerical simulation and spectral and temperature measurements, the improved broadband emission and photothermal nonlinearity are interpreted by enhanced optical energy localization around the laser spot that results in boosting the photon-to-photon conversion efficiency. The use of the nonlinear photothermal emission process as a broadband NIR light source, which could be exploited for applications including NIR spectroscopy, imaging, and sensing, is further demonstrated as a proof-of-concept.

12.
Materials (Basel) ; 14(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947381

RESUMO

Graphene has been one of the most tested materials since its discovery in 2004. It is known for its special properties, such as electrical conductivity, elasticity and flexibility, antimicrobial effect, and high biocompatibility with many mammal cells. In medicine, the antibacterial, antiviral, and antitumor properties of graphene have been tested as intensively as its drug carrying ability. In this study, the protective effect of graphene oxide against Rubella virus infection of human lung epithelial carcinoma cells and human chondrocyte cells was examined. Cells were incubated with graphene oxide alone and in combination with the Rubella virus. The cytopathic effect in two incubation time periods was measured using DAPI dye as a percentage value of the changed cells. It was shown that the graphene oxide alone has no cytopathic effect on any of tested cell lines, while the Rubella virus alone is highly cytopathic to the cells. However, in combination with the graphene oxide percentage of the changed cells, its cytotopathicity is significantly lower. Moreover, it can be concluded that graphene oxide has protective properties against the Rubella virus infection to cells, lowering its cytopathic changes to the human cells.

13.
Opt Express ; 29(17): 27291-27297, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615147

RESUMO

The measurements of laser induced emission (LIE) of a tungsten filament upon irradiation with the focused beam of a CW IR laser diode are reported. It was found that the emission occurred in visible and infrared range. The influence of the applied DC electric field significantly affected the intensity of LIE of the tungsten filament. The origin of LIE is discussed in terms of multiphoton ionization of tungsten W+ atoms assisted by light emission due to the intervalence charge transfer in the tungsten hybrid domain (W, W+).

14.
ACS Omega ; 6(5): 3711-3716, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585751

RESUMO

The present work demonstrates a new concept of the efficient generation of hydrogen from methanol by the continuous wave laser diode irradiation of an immersed graphene aerogel (GA) scaffold as the target. It was observed that the process occurred very intensively when it was assisted by bright white light emission in the spot of a laser-irradiated GA scaffold. The yield of hydrogen emission increased exponentially with the applied laser power. The light emission was assisted by the intense production of H2, CH4, and CO gases. It was found that with increasing excitation laser power, the H2 generation increased at the expense of CO. It is shown that the volume of CO decreases because of the formation of C2 molecules and CO2 gases. The mechanism of the laser-driven dissociation of methanol was discussed in terms of the violent ejection of hot electrons from the GA surface as a result of the laser-induced light emission of the graphene target.

15.
Molecules ; 26(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419179

RESUMO

A new conjugate of gallato zirconium (IV) phthalocyanine complexes (PcZrGallate) has been obtained from alkilamino-modified SiO2 nanocarriers (SiO2-(CH2)3-NH2NPs), which may potentially be used in photodynamic therapy of atherosclerosis. Its structure and morphology have been investigated. The photochemical properties of the composite material has been characterized. in saline environments when exposed to different light sources Reactive oxygen species (ROS) generation in DMSO suspension under near IR irradiation was evaluated. The PcZrGallate-SiO2 conjugate has been found to induce a cytotoxic effect on macrophages after IR irradiation, which did not correspond to ROS production. It was found that SiO2 as a carrier helps the photosensitizer to enter into the macrophages, a type of cells that play a key role in the development of atheroma. These properties of the novel conjugate may make it useful in the photodynamic therapy of coronary artery disease.


Assuntos
Complexos de Coordenação , Portadores de Fármacos , Indóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Placa Aterosclerótica , Dióxido de Silício , Zircônio , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Indóis/química , Indóis/farmacologia , Isoindóis , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células RAW 264.7 , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Zircônio/química , Zircônio/farmacologia
16.
Dalton Trans ; 49(26): 9130-9136, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32578638

RESUMO

The Stokes and anti-Stokes emission spectra generated from Sr2CeO4/graphene flake composites were investigated. The excitation and emission spectra, decay profiles and quantum efficiency of the studied materials were collected. It was found that the addition of graphene flakes (GFs) significantly affects spectroscopic properties. In particular, the anti-Stokes laser induced white emission spectra were analyzed as a function of excitation laser power, and ambient atmospheric pressure. The influence of graphene flakes concentration on laser induced photocurrent was investigated. The color of their emission significantly differs from the color of other tested composites. In particular, the impact of graphene concentration on the investigated features will be presented and mechanisms responsible for the observed effects will be discussed.

17.
Materials (Basel) ; 13(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290150

RESUMO

Nanocrystalline La0.9A0.1MnO3 (where A is Li, Na, K) powders were synthesized by a combustion method. The powders used to prepare nanoceramics were fabricated via a high-temperature sintering method. The structure and morphology of all compounds were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the size of the crystallites depended on the type of alkali ions used. The high-pressure sintering method kept the nanosized character of the grains in the ceramics, which had a significant impact on their physical properties. Magnetization studies were performed for both powder and ceramic samples in order to check the impact of the alkali ion dopants as well as the sintering pressure on the magnetization of the compounds. It was found that, by using different dopants, it was possible to strongly change the magnetic characteristics of the manganites.

18.
Sci Rep ; 9(1): 10417, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320659

RESUMO

We studied magnetostatic response of the Bi0.9La0.1FeO3- KBr composites (BLFO-KBr) consisting of nanosized (≈100 nm) ferrite Bi0.9La0.1FeO3 (BLFO) conjugated with fine grinded ionic conducting KBr. When the fraction of KBr is rather small (less than 15 wt%) the magnetic response of the composite is very weak and similar to that observed for the BLFO (pure KBr matrix without Bi1-xLaxFeO3 has no magnetic response as anticipated). However, when the fraction of KBr increases above 15%, the magnetic response of the composite changes substantially and the field dependence of magnetization reveals ferromagnetic-like hysteresis loop with a remanent magnetization about 0.14 emu/g and coercive field about 1.8 Tesla (at room temperature). Nothing similar to the ferromagnetic-like hysteresis loop can be observed in Bi1-zLazFeO3 ceramics with z ≤ 0.15, which magnetization quasi-linearly increases with magnetic field. Different physical mechanisms were considered to explain the unusual experimental results for BLFO-KBr nanocomposites, but only those among them, which are highly sensitive to the interaction of antiferromagnetic Bi0.9La0.1FeO3 with ionic conductor KBr, can be relevant.

19.
Biomed Res Int ; 2018: 2758347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402466

RESUMO

Stainless steel 316L is a material commonly used in cardiovascular medicine. Despite the various methods applied in stent production, the rates of in-stent restenosis and thrombosis remain high. In this study graphene was used to coat the surface of 316L substrate for enhanced bio- and hemocompatibility of the substrate. The presence of graphene layers applied to the substrate was investigated using cutting-edge imaging technology: energy-filtered low-voltage FE-SEM approach, scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The potential of G-316L surface to influence endothelial cells phenotype and endothelial-to-mesenchymal transition (EndoMT) has been determined. Our results show that the bio- and hemocompatible properties of graphene coatings along with known radial force of 316L make G-316L a promising candidate for intracoronary implants.


Assuntos
Materiais Revestidos Biocompatíveis/química , Células Endoteliais/metabolismo , Teste de Materiais , Stents , Humanos , Propriedades de Superfície
20.
Small ; 13(47)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29116668

RESUMO

At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics. Although the increased amount of Yb3+ ions boosts UCNP performance by amplifying the absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy migration to the surface, thereby reducing the overall energy transfer efficiency to the activator ions. The results provide yet another proof that UC phosphor chemistry combined with materials engineering through intentional core@shell structures may help to fine-tune the luminescence features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and display technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...