Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15002, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294799

RESUMO

Uniform quasi-one-dimensional integer spin compounds are of interest as a potential realization of the Haldane conjecture of a gapped spin liquid. This phase, however, has to compete with magnetic anisotropy and long-range ordered phases, the implementation of which depends on the ratio of interchain J' and intrachain J exchange interactions and both uniaxial D and rhombic E single-ion anisotropies. Strontium nickel selenite chloride, Sr2Ni(SeO3)2Cl2, is a spin-1 chain system which passes through a correlations regime at Tmax ~ 12 K to long-range order at TN = 6 K. Under external magnetic field it experiences the sequence of spin-flop at Bc1 = 9.0 T and spin-flip transitions Bc2 = 23.7 T prior to full saturation at Bsat = 31.0 T. Density functional theory provides values of the main exchange interactions and uniaxial anisotropy which corroborate the experimental findings. The values of J'/J = 0.083 and D/J = 0.357 place this compound into a hitherto unoccupied sector of the Sakai-Takahashi phase diagram.

2.
J Phys Condens Matter ; 33(3)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33107445

RESUMO

Structural properties of CuAl2O4, which was recently argued to show unusual suppression of the Jahn-Teller distortions by the spin-orbit coupling, are investigated under pressures up to 6 GPa. Analysis of x-ray powder diffraction experiments shows that CuAl2O4gets unstable and decomposes onto CuO and Al2O3at pressures ∼6 GPa and temperature ∼1000 K. This finding is complemented by the density-functional theory +U+ spin-orbit coupling calculations, which demonstrate that this instability is partially driven by a (relatively) large compressibility of strongly Jahn-Teller distorted CuO.

3.
J Phys Condens Matter ; 31(23): 235601, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30818287

RESUMO

Gold is inert and forms very few compounds. One of the most interesting of those is calaverite AuTe2, which has incommensurate structure and which becomes superconducting when doped or under pressure. There exist a 'sibling' of AuTe2, the mineral sylvanite AuAgTe4, which properties are almost unknown. In sylvanite Au and Ag ions are ordered in stripes, and Te6 octahedra around metals are distorted in such a way that Ag becomes linearly coordinated, what is typical for Ag1+ , whereas Au is square coordinated-it is typical for d 8 configurations, i.e. one can assign to Au the valence 3+. Our theoretical study shows that at pressure [Formula: see text] GPa there should occur in it a structural transition such that above this critical pressure Te6 octahedra around Au and Ag become regular and practically identical. Simultaneously Te-Te dimers, existing at P = 0 GPa, disappear, and material from a bad metal becomes a usual metal with predominantly Te 5p  states at the Fermi energy. We expect that, similar to AuTe2, AuAgTe4 should become superconducting above [Formula: see text].

4.
Sci Adv ; 5(1): eaav4020, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30746479

RESUMO

Young's archetypal double-slit experiment forms the basis for modern diffraction techniques: The elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Young's experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns, which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba3CeIr2O9 with structural Ir dimers and strong spin-orbit coupling. The double "slits" in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.

5.
J Phys Condens Matter ; 29(13): 13LT01, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28140356

RESUMO

CuAl2O4 is a normal spinel oxide having quantum spin, S = 1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependence of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards a higher temperature with magnetic fields. On the other hand, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign of structural distortion either although Cu2+ is a Jahn-Teller active ion. Thus, we claim that an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also exhibits a large frustration parameter, f = |θ CW/T m| ~ 67, one of the largest values reported for spinel oxides. Our observations suggest that CuAl2O4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.

6.
Sci Rep ; 6: 25238, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27143474

RESUMO

When an electronic system has strong correlations and a large spin-orbit interaction, it often exhibits a plethora of mutually competing quantum phases. How a particular quantum ground state is selected out of several possibilities is a very interesting question. However, equally fascinating is how such a quantum entangled state breaks up due to perturbation. This important question has relevance in very diverse fields of science from strongly correlated electron physics to quantum information. Here we report that a quantum entangled dimerized state or valence bond crystal (VBC) phase of Li2RuO3 shows nontrivial doping dependence as we perturb the Ru honeycomb lattice by replacing Ru with Li. Through extensive experimental studies, we demonstrate that the VBC phase melts into a valence bond liquid phase of the RVB (resonating valence bond) type. This system offers an interesting playground where one can test and refine our current understanding of the quantum competing phases in a single compound.

7.
Dalton Trans ; 45(17): 7373-84, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27029886

RESUMO

We report the revised crystal structure, static and dynamic magnetic properties of quasi-two dimensional honeycomb-lattice silver delafossite Ag3Co2SbO6. The magnetic susceptibility and specific heat data are consistent with the onset of antiferromagnetic long range order at low temperatures with Néel temperature TN ∼ 21.2 K. In addition, the magnetization curves revealed a field-induced (spin-flop type) transition below TN in moderate magnetic fields. The GGA+U calculations show the importance of the orbital degrees of freedom, which maintain a hierarchy of exchange interaction in the system. The strongest antiferromagnetic exchange coupling was found in the shortest Co-Co pairs and is due to direct and superexchange interaction between the half-filled xz + yz orbitals pointing directly to each other. The other four out of six nearest neighbor exchanges within the cobalt hexagon are suppressed, since for these bonds the active half-filled orbitals turned out to be parallel and do not overlap. The electron spin resonance (ESR) spectra reveal a broad absorption line attributed to the Co(2+) ion in an octahedral coordination with an average effective g-factor g = 2.40 ± 0.05 at room temperature and show strong divergence of the ESR parameters below ∼150 K, which implies an extended region of short-range correlations. Based on the results of magnetic and thermodynamic studies in applied fields, we propose a magnetic phase diagram for the new honeycomb-lattice delafossite.

8.
J Phys Condens Matter ; 23(44): 445601, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22005022

RESUMO

Special features of the crystal field splitting of d-levels in the transition metal compounds with small or negative charge-transfer gaps Δ(CT) are considered. We show that in this case the Coulomb term and the covalent contribution to the t(2g)-e(g) splitting have different signs. In order to check theoretical predictions we carried out ab initio band structure calculations for Cs(2)Au(2)Cl(6), in which the charge-transfer gap is negative, so that the d-electrons predominantly occupy low-lying bonding states. For these states the e(g)-levels lie below the t(2g) ones, which demonstrates that at least in this case the influence of the p-d covalency on the total value of the crystal field splitting is stronger than the Coulomb interaction (which would lead to the opposite level order). We also show that the states in the conduction band are made predominantly of p-states of ligands (Cl), with a small admixture of d-states of Au.

9.
Phys Rev Lett ; 107(26): 266402, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243170

RESUMO

Synchrotron x-ray diffraction experiment shows that the metal-insulator transition occurring in a ferromagnetic state of a hollandite K(2)Cr(8)O(16) is accompanied by a structural distortion from the tetragonal I4/m to monoclinic P112(1)/a phase with a √2×√2×1 supercell. Detailed electronic structure calculations demonstrate that the metal-insulator transition is caused by a Peierls instability in the quasi-one-dimensional column structure made of four coupled Cr-O chains running in the c direction, leading to the formation of tetramers of Cr ions below the transition temperature. This provides a rare example of the Peierls transition of fully spin-polarized electron systems.

10.
J Phys Condens Matter ; 21(7): 075602, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21817332

RESUMO

The LDA+DMFT (local density approximation combined with dynamical mean-field theory) computation scheme has been used to calculate spectral properties of LaFeAsO-the parent compound of the new high-T(c) iron oxypnictides. The average Coulomb repulsion [Formula: see text] and Hund's exchange J parameters for iron 3d electrons were calculated using the first-principles constrained density functional theory scheme in the Wannier functions formalism. Resulting values strongly depend on the number of states taken into account in the calculations: when the full set of O-2p, As-4p and Fe-3d orbitals and the corresponding bands are included, the interaction parameters [Formula: see text] eV and J = 0.8 eV are obtained. In contrast, when the basis set is restricted to the Fe-3d orbitals and bands only, the calculation gives much smaller values of [Formula: see text] eV, J = 0.5 eV. Nevertheless, DMFT calculations with both parameter sets and the corresponding basis sets result in a weakly correlated electronic structure that is in agreement with the experimental x-ray and photoemission spectra.

11.
J Phys Condens Matter ; 21(30): 305501, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21828552

RESUMO

The results of the calculation of the electronic and magnetic properties for the spin-gapped material CuTe(2)O(5) are presented. The direct computation of exchange constants J in the framework of the LDA+U shows that the largest exchange coupling in CuTe(2)O(5) is found between fourth nearest neighbors, as was argued by Das et al (2008 Phys. Rev. 77 224437), and that this compound should be considered as the two-dimensional coupled dimer system.

12.
J Phys Condens Matter ; 21(38): 385501, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21832372

RESUMO

In the present paper the results of fitting synchrotron diffraction data are obtained for the intermediate high-pressure phase (9.5 GPa) of the lead selenide based compound Pb(1-x)Sn(x)Se (x = 0.125)-an optoelectronic as well as a thermoelectric material-for two types of lattice symmetries Pnma (space group #62) and Cmcm (space group #63). Both lattice parameters and positions of atoms for the above mentioned structures have been used in calculations of the electron structure of high-pressure phases. The main difference between the electronic properties for Cmcm and Pnma structures established in electronic structure calculations is that in the first one the PbSe compound was found to be a metal, while in the second a small semiconductor gap (E(G) = 0.12 eV) was obtained. Moreover, the forces in the Cmcm structure are an order of magnitude larger than those calculated for the Pnma lattice. In the optimized, Pnma structure within a generalized gradient approximation (GGA), the band gap increases up to E(G) = 0.27 eV. The result coincides with the data on thermoelectric power and electrical resistance data pointing to a semiconductor gap of ∼0.2 eV at ∼9.5 GPa. Thus, the Pmna type of lattice seems to be a preferable version for the intermediate phase compared with the Cmcm one.

13.
Phys Rev Lett ; 101(16): 167204, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999709

RESUMO

Combining infrared reflectivity, transport, susceptibility, and several diffraction techniques, we find compelling evidence that CaCrO3 is a rare case of a metallic and antiferromagnetic transition-metal oxide with a three-dimensional electronic structure. Local spin density approximation calculations correctly describe the metallic behavior as well as the anisotropic magnetic ordering pattern of C type: The high Cr valence state induces via sizable pd hybridization remarkably strong next-nearest-neighbor interactions stabilizing this ordering. The subtle balance of magnetic interactions gives rise to magnetoelastic coupling, explaining pronounced structural anomalies observed at the magnetic ordering transition.

14.
Phys Rev Lett ; 96(24): 249701; author reply 249702, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16907287
15.
Phys Rev Lett ; 95(19): 196404, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16384003

RESUMO

We found direct experimental evidence for an orbital switching in the V 3d states across the metal-insulator transition in VO2. We have used soft-x-ray absorption spectroscopy at the V L2,3 edges as a sensitive local probe and have determined quantitatively the orbital polarizations. These results strongly suggest that, in going from the metallic to the insulating state, the orbital occupation changes in a manner that charge fluctuations and effective bandwidths are reduced, that the system becomes more one dimensional and more susceptible to a Peierls-like transition, and that the required massive orbital switching can only be made if the system is close to a Mott insulating regime.

16.
Phys Rev Lett ; 94(5): 056401, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783666

RESUMO

Utilizing a sum rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO3 is strongly reduced from its ionic value, both below and above the Ne el temperature. Using Ti L2,3 x-ray absorption spectroscopy as a local probe, we found that the crystal-field splitting in the t2g subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...