Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38498451

RESUMO

Plants in the genus Erysimum produce both glucosinolates and cardenolides as a defense mechanism against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardenolide content, and their resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not further induced by aphid feeding. To investigate the relative importance of glucosinolates and cardenolides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. The genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci, which affected glucosinolates and cardenolides, but not the aphid resistance. The abundance of most glucosinolates and cardenolides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although the overall cardenolide content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardenolides have a predominant effect on aphid resistance in E. cheiranthoides.

2.
Proc Natl Acad Sci U S A ; 121(10): e2305228121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394215

RESUMO

We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.


Assuntos
Evolução Biológica , Liliaceae , Filogenia , Ecossistema , Cromossomos , Especiação Genética
3.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293015

RESUMO

Plants in the genus Erysimum produce both glucosinolates and cardiac glycosides as defense against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardiac glycoside content, and resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not induced further by aphid feeding. To investigate the relative importance of glucosinolates and cardiac glycosides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. Genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci affecting glucosinolates and cardiac glycosides, but not aphid resistance. The abundance of most glucosinolates and cardiac glycosides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although overall cardiac glycoside content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardiac glycosides have a predominant effect on aphid resistance in E. cheiranthoides.

4.
Appl Plant Sci ; 11(3): e11524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342170

RESUMO

Premise: We present approaches used to generate long-read Nanopore sequencing reads for the Liliales and demonstrate how modifications to standard protocols directly impact read length and total output. The goal is to help those interested in generating long-read sequencing data determine which steps may be necessary for optimizing output and results. Methods: Four species of Calochortus (Liliaceae) were sequenced. Modifications made to sodium dodecyl sulfate (SDS) extractions and cleanup protocols included grinding with a mortar and pestle, using cut or wide-bore tips, chloroform cleaning, bead cleaning, eliminating short fragments, and using highly purified DNA. Results: Steps taken to maximize read length can decrease overall output. Notably, the number of pores in a flow cell is correlated with the overall output, yet we did not see an association between the pore number and the read length or the number of reads produced. Discussion: Many factors contribute to the overall success of a Nanopore sequencing run. We showed the direct impact that several modifications to the DNA extraction and cleaning steps have on the total sequencing output, read size, and number of reads generated. We show a tradeoff between read length and the number of reads and, to a lesser extent, the total sequencing output, all of which are important factors for successful de novo genome assembly.

5.
Plant Genome ; 15(3): e20223, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35666039

RESUMO

The tomato (Solanum lycopersicum L.) family, Solanaceae, is a model clade for a wide range of applied and basic research questions. Currently, reference-quality genomes are available for over 30 species from seven genera, and these include numerous crops as well as wild species [e.g., Jaltomata sinuosa (Miers) Mione and Nicotiana attenuata Torr. ex S. Watson]. Here we present the genome of the showy-flowered Andean shrub Iochroma cyaneum (Lindl.) M. L. Green, a woody lineage from the tomatillo (Physalis philadelphica Lam.) subfamily Physalideae. The assembled size of the genome (2.7 Gb) is more similar in size to pepper (Capsicum annuum L.) (2.6 Gb) than to other sequenced diploid members of the berry clade of Solanaceae [e.g., potato (Solanum tuberosum L.), tomato, and Jaltomata]. Our assembly recovers 92% of the conserved orthologous set, suggesting a nearly complete genome for this species. Most of the genomic content is repetitive (69%), with Gypsy elements alone accounting for 52% of the genome. Despite the large amount of repetitive content, most of the 12 I. cyaneum chromosomes are highly syntenic with tomato. Bayesian concordance analysis provides strong support for the berry clade, including I. cyaneum, but reveals extensive discordance along the backbone, with placement of chili pepper and Jaltomata being highly variable across gene trees. The I. cyaneum genome contributes to a growing wealth of genomic resources in Solanaceae and underscores the need for expanded sampling of diverse berry genomes to dissect major morphological transitions.


Assuntos
Capsicum , Solanum lycopersicum , Solanum tuberosum , Teorema de Bayes , Capsicum/genética , Flores , Frutas , Genoma de Planta , Solanum lycopersicum/genética , Solanum tuberosum/genética
6.
Plant J ; 110(6): 1791-1810, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411592

RESUMO

Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene ß-cyclase whose function we demonstrate.


Assuntos
Solanum lycopersicum , Solanum , Antocianinas/genética , Cromossomos de Plantas/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Solanum/genética
7.
Plant Mol Biol ; 109(4-5): 533-549, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35020104

RESUMO

KEY MESSAGE: A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.


Assuntos
Afídeos , Setaria (Planta) , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/farmacologia , Folhas de Planta/genética , Serotonina/metabolismo , Serotonina/farmacologia , Setaria (Planta)/genética
8.
Front Plant Sci ; 12: 697556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490003

RESUMO

Melocactus glaucescens is an endangered cactus highly valued for its ornamental properties. In vitro shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated de novo transcriptome data, describing in vitro shoot organogenesis induction in M. glaucescens. Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) and CALMODULIN (CaM) genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of M. glaucescens after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.

9.
Plant J ; 105(3): 639-648, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140462

RESUMO

The chloroplast RNA splicing and ribosome maturation (CRM) domain is a RNA-binding domain found in a plant-specific protein family whose characterized members play essential roles in splicing group I and group II introns in mitochondria and chloroplasts. Together, these proteins are required for splicing of the majority of the approximately 20 chloroplast introns in land plants. Here, we provide evidence from Setaria viridis and maize that an uncharacterized member of this family, CRM Family Member1 (CFM1), promotes the splicing of most of the introns that had not previously been shown to require a CRM domain protein. A Setaria mutant expressing mutated CFM1 was strongly disrupted in the splicing of three chloroplast tRNAs: trnI, trnV and trnA. Analyses by RNA gel blot and polysome association suggest that the tRNA deficiencies lead to compromised chloroplast protein synthesis and the observed whole-plant chlorotic phenotypes. Co-immunoprecipitation data demonstrate that the maize CFM1 ortholog is bound to introns whose splicing is disrupted in the cfm1 mutant. With these results, CRM domain proteins have been shown to promote the splicing of all but two of the introns found in angiosperm chloroplast genomes.


Assuntos
Cloroplastos/genética , Proteínas de Plantas/genética , Splicing de RNA , Setaria (Planta)/genética , Zea mays/genética , Proteínas de Cloroplastos/genética , Íntrons , Mutação , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , Domínios Proteicos , RNA de Transferência
10.
Nat Commun ; 11(1): 5817, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199703

RESUMO

Solanum pimpinellifolium (SP) is the wild progenitor of cultivated tomato. Because of its remarkable stress tolerance and intense flavor, SP has been used as an important germplasm donor in modern tomato breeding. Here, we present a high-quality chromosome-scale genome sequence of SP LA2093. Genome comparison identifies more than 92,000 structural variants (SVs) between LA2093 and the modern cultivar, Heinz 1706. Genotyping these SVs in ~600 representative tomato accessions identifies alleles under selection during tomato domestication, improvement and modern breeding, and discovers numerous SVs overlapping genes known to regulate important breeding traits such as fruit weight and lycopene content. Expression quantitative trait locus (eQTL) analysis detects hotspots harboring master regulators controlling important fruit quality traits, including cuticular wax accumulation and flavonoid biosynthesis, and SVs contributing to these complex regulatory networks. The LA2093 genome sequence and the identified SVs provide rich resources for future research and biodiversity-based breeding.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Solanum lycopersicum/genética , Solanum/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Genótipo , Licopeno/metabolismo , Locos de Características Quantitativas/genética , Seleção Genética , Análise de Sequência de DNA
11.
Plant J ; 104(4): 917-931, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32812296

RESUMO

Deep insights into chloroplast biogenesis have been obtained by mutant analysis; however, in C4 plants a relevant mutant collection has only been developed and exploited for maize. Here, we report the initial characterization of an ethyl methyl sulfonate-induced mutant population for the C4 model Setaria viridis. Approximately 1000 M2 families were screened for the segregation of pale-green seedlings in the M3 generation, and a subset of these was identified to be deficient in post-transcriptional steps of chloroplast gene expression. Causative mutations were identified for three lines using deep sequencing-based bulked segregant analysis, and in one case confirmed by transgenic complementation. Using chloroplast RNA-sequencing and other molecular assays, we describe phenotypes of mutants deficient in PSRP7, a plastid-specific ribosomal protein, OTP86, an RNA editing factor, and cpPNP, the chloroplast isozyme of polynucleotide phosphorylase. The psrp mutant is globally defective in chloroplast translation, and has varying deficiencies in the accumulation of chloroplast-encoded proteins. The otp86 mutant, like its Arabidopsis counterpart, is specifically defective in editing of the rps14 mRNA; however, the conditional pale-green mutant phenotype contrasts with the normal growth of the Arabidopsis mutant. The pnp mutant exhibited multiple defects in 3' end maturation as well as other qualitative changes in the chloroplast RNA population. Overall, our collection opens the door to global analysis of photosynthesis and early seedling development in an emerging C4 model.


Assuntos
Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Isoenzimas , Mutação , Fenótipo , Fotossíntese/genética , Proteínas de Plantas/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Edição de RNA , RNA de Cloroplastos/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Plântula/genética , Plântula/fisiologia , Análise de Sequência de RNA , Setaria (Planta)/fisiologia
12.
Sci Rep ; 10(1): 12048, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694584

RESUMO

Capsicum annuum is one of the most important horticultural crops worldwide. Anthracnose disease (Colletotrichum spp.) is a major constraint for chili production, causing substantial losses. Capsidiol is a sesquiterpene phytoalexin present in pepper fruits that can enhance plant resistance. The genetic mechanisms involved in capisidiol biosynthesis are still poorly understood. In this study, a 3' RNA sequencing approach was used to develop the transcriptional profile dataset of C. annuum genes in unripe (UF) and ripe fruits (RF) in response to C. scovillei infection. Results showed 4,845 upregulated and 4,720 downregulated genes in UF, and 2,560 upregulated and 1,762 downregulated genes in RF under fungus inoculation. Four capsidiol-related genes were selected for RT-qPCR analysis, two 5-epi-aristolochene synthase (CA12g05030, CA02g09520) and two 5-epi-aristolochene-1,3-dihydroxylase genes (CA12g05070, CA01g05990). CA12g05030 and CA01g05990 genes showed an early response to fungus infection in RF (24 h post-inoculation-HPI), being 68-fold and 53-fold more expressed at 96 HPI, respectively. In UF, all genes showed a late response, especially CA12g05030, which was 700-fold more expressed at 96 HPI compared to control plants. We are proving here the first high-throughput expression dataset of pepper fruits in response to anthracnose disease in order to contribute for future pepper breeding programs.


Assuntos
Capsicum/genética , Capsicum/microbiologia , Colletotrichum , Frutas/genética , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Sesquiterpenos/metabolismo , Biologia Computacional/métodos , Mineração de Dados , Frutas/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
13.
Plant J ; 103(4): 1433-1445, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32391580

RESUMO

The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide-binding leucine-rich repeat protein (NLR)-encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA-Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Solanaceae/genética , Solanum/genética , Evolução Molecular , Solanum lycopersicum/genética , Proteínas de Membrana Transportadoras/fisiologia , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Pseudogenes/genética , Pseudogenes/fisiologia , Ralstonia/genética , Solanaceae/fisiologia , Solanum tuberosum/genética , Nicotiana/genética
14.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32252891

RESUMO

Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.


Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.


Assuntos
Erysimum/química , Erysimum/genética , Genoma de Planta , Filogenia , Compostos Fitoquímicos/análise , Plantas Tóxicas/genética , Erysimum/classificação , Evolução Molecular , Geografia , Fenótipo , Plantas Tóxicas/química , Plantas Tóxicas/classificação
15.
J Proteome Res ; 19(6): 2247-2263, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32338516

RESUMO

Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas/genética , Proteômica , Rhizobiaceae/genética , Transcriptoma
16.
Sci Rep ; 9(1): 13084, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511554

RESUMO

Salicylic acid (SA) is the major metabolite and active ingredient of aspirin; both compounds reduce pain, fever, and inflammation. Despite over a century of research, aspirin/SA's mechanism(s) of action is still only partially understood. Here we report the results of a genome-wide, high-throughput screen to identify potential SA-binding proteins (SABPs) in human HEK293 cells. Following photo-affinity crosslinking to 4-azidoSA and immuno-selection with an anti-SA antibody, approximately 2,000 proteins were identified. Among these, 95 were enriched more than 10-fold. Pathway enrichment analysis with these 95 candidate SABPs (cSABPs) revealed possible involvement of SA in multiple biological pathways, including (i) glycolysis, (ii) cytoskeletal assembly and/or signaling, and (iii) NF-κB-mediated immune signaling. The two most enriched cSABPs, which corresponded to the glycolytic enzymes alpha-enolase (ENO1) and pyruvate kinase isozyme M2 (PKM2), were assessed for their ability to bind SA and SA's more potent derivative amorfrutin B1 (amoB1). SA and amoB1 bound recombinant ENO1 and PKM2 at low millimolar and micromolar concentrations, respectively, and inhibited their enzymatic activities in vitro. Consistent with these results, low millimolar concentrations of SA suppressed glycolytic activity in HEK293 cells. To provide insights into how SA might affect various human diseases, a cSABP-human disorder/disease network map was also generated.


Assuntos
Doença , Genômica , Proteínas/metabolismo , Ácido Salicílico/metabolismo , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Salicílico/farmacologia
17.
G3 (Bethesda) ; 9(8): 2377-2393, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167834

RESUMO

We report the first whole genome sequence (WGS) assembly and annotation of a dwarf coconut variety, 'Catigan Green Dwarf' (CATD). The genome sequence was generated using the PacBio SMRT sequencing platform at 15X coverage of the expected genome size of 2.15 Gbp, which was corrected with assembled 50X Illumina paired-end MiSeq reads of the same genome. The draft genome was improved through Chicago sequencing to generate a scaffold assembly that results in a total genome size of 2.1 Gbp consisting of 7,998 scaffolds with N50 of 570,487 bp. The final assembly covers around 97.6% of the estimated genome size of coconut 'CATD' based on homozygous k-mer peak analysis. A total of 34,958 high-confidence gene models were predicted and functionally associated to various economically important traits, such as pest/disease resistance, drought tolerance, coconut oil biosynthesis, and putative transcription factors. The assembled genome was used to infer the evolutionary relationship within the palm family based on genomic variations and synteny of coding gene sequences. Data show that at least three (3) rounds of whole genome duplication occurred and are commonly shared by these members of the Arecaceae family. A total of 7,139 unique SSR markers were designed to be used as a resource in marker-based breeding. In addition, we discovered 58,503 variants in coconut by aligning the Hainan Tall (HAT) WGS reads to the non-repetitive regions of the assembled CATD genome. The gene markers and genome-wide SSR markers established here will facilitate the development of varieties with resilience to climate change, resistance to pests and diseases, and improved oil yield and quality.


Assuntos
Arecaceae/classificação , Arecaceae/genética , Cocos/classificação , Cocos/genética , Variação Genética , Genoma de Planta , Genômica , Arecaceae/metabolismo , Arecaceae/parasitologia , Cocos/metabolismo , Cocos/parasitologia , Biologia Computacional/métodos , Resistência à Doença/genética , Marcadores Genéticos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia , Óleos de Plantas/metabolismo , Estresse Fisiológico
18.
Plant Genome ; 12(1)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30951101

RESUMO

Genotyping-by-sequencing (GBS) was employed to construct a highly saturated genetic linkage map of a tomato ( L.) recombinant inbred line (RIL) population, derived from a cross between cultivar NC EBR-1 and the wild tomato L. accession LA2093. A pipeline was developed to convert single nucleotide polymorphism (SNP) data into genomic bins, which could be used for fine mapping of quantitative trait loci (QTL) and identification of candidate genes. The pipeline, implemented in a python script named SNPbinner, adopts a hidden Markov model approach for calculation of recombination breakpoints followed by genomic bins construction. The total length of the newly developed high-resolution genetic map was 1.2-fold larger than previously estimated based on restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR)-based markers. The map was used to verify and refine QTL previously identified for two fruit quality traits in the RIL population, fruit weight (FW) and fruit lycopene content (LYC). Two well-described FW QTL ( and ) were localized precisely at their known underlying causative genes, and the QTL intervals were decreased by two- to tenfold. A major QTL for LYC content () was verified at high resolution and its underlying causative gene was determined to be ζ (). The RIL population, the high resolution genetic map, and the easy-to-use genotyping pipeline, SNPbinner, are made publicly available.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas , Solanum lycopersicum/genética , Mapeamento Cromossômico , Genes de Plantas , Técnicas de Genotipagem , Licopeno/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA de Plantas , Recombinação Genética , Análise de Sequência de RNA , cis-trans-Isomerases/metabolismo
19.
New Phytol ; 223(1): 447-461, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861136

RESUMO

The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.


Assuntos
Ecótipo , Flagelina/metabolismo , Variação Genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Resistência à Doença , Genes Reporter , Padrões de Herança/genética , Solanum lycopersicum/genética , Mutação/genética , Peptídeos/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Tumores de Planta/microbiologia , Característica Quantitativa Herdável , Espécies Reativas de Oxigênio/metabolismo
20.
Mol Plant Microbe Interact ; 32(8): 949-960, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30785360

RESUMO

Race 1 strains of Pseudomonas syringae pv. tomato, which cause bacterial speck disease of tomato, are becoming increasingly common and no simply inherited genetic resistance to such strains is known. We discovered that a locus in Solanum lycopersicoides, termed Pseudomonas tomato race 1 (Ptr1), confers resistance to race 1 P. syringae pv. tomato strains by detecting the activity of type III effector AvrRpt2. In Arabidopsis, AvrRpt2 degrades the RIN4 protein, thereby activating RPS2-mediated immunity. Using site-directed mutagenesis of AvrRpt2, we found that, like RPS2, activation of Ptr1 requires AvrRpt2 proteolytic activity. Ptr1 also detected the activity of AvrRpt2 homologs from diverse bacteria, including one in Ralstonia pseudosolanacearum. The genome sequence of S. lycopersicoides revealed no RPS2 homolog in the Ptr1 region. Ptr1 could play an important role in controlling bacterial speck disease and its future cloning may shed light on an example of convergent evolution for recognition of a widespread type III effector.


Assuntos
Resistência à Doença , Proteínas de Membrana Transportadoras , Pseudomonas syringae , Ralstonia , Solanum , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Genoma Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas syringae/classificação , Pseudomonas syringae/fisiologia , Ralstonia/classificação , Ralstonia/fisiologia , Solanum/genética , Solanum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...