Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910561

RESUMO

Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Príons/metabolismo , Microglia/metabolismo , Gliose/patologia , Neuroproteção , Camundongos Endogâmicos C57BL , Doenças Priônicas/metabolismo , Encéfalo/metabolismo
2.
Vet Res ; 53(1): 111, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527166

RESUMO

Chronic wasting disease (CWD) is a prion disease of cervids including deer, elk, reindeer, and moose. Human consumption of cervids is common, therefore assessing the risk potential of CWD transmission to humans is critical. In a previous study, we tested CWD transmission via intracerebral inoculation into transgenic mice (tg66 and tgRM) that over-expressed human prion protein. Mice screened by traditional prion detection assays were negative. However, in a group of 88 mice screened by the ultrasensitive RT-QuIC assay, we identified 4 tg66 mice that produced inconsistent positive RT-QuIC reactions. These data could be false positive reactions, residual input inoculum or indicative of subclinical infections suggestive of cross species transmission of CWD to humans. Additional experiments were required to understand the nature of the prion seeding activity in this model. In this manuscript, second passage experiments using brains from mice with weak prion seeding activity showed they were not infectious to additional recipient tg66 mice. Clearance experiments showed that input CWD prion seeding activity was eliminated by 180 days in tg66 mice and PrPKO mice, which are unable to replicate prion protein, indicating that the weak positive levels of seeding activity detected at later time points was not likely residual inoculum. The failure of CWD prions to cause disease in tg66 after two sequential passages suggested that a strong species barrier prevented CWD infection of mice expressing human prion protein.


Assuntos
Cervos , Príons , Rena , Doenças dos Roedores , Doença de Emaciação Crônica , Humanos , Animais , Camundongos , Proteínas Priônicas/genética , Príons/genética , Camundongos Transgênicos
3.
PLoS One ; 17(10): e0276850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301895

RESUMO

Microglia (MG) are critical to host defense during prion infection, but the mechanism(s) of this neuroprotection are poorly understood. To better examine the influence of MG during prion infection, we reduced MG in the brains of C57BL/10 mice using PLX5622 and assessed prion clearance and replication using multiple approaches that included bioassay, immunohistochemistry, and Real-Time Quaking Inducted Conversion (RT-QuIC). We also utilized a strategy of intermittent PLX5622 treatments to reduce MG and allow MG repopulation to test whether new MG could alter prion disease progress. Lastly, we investigated the influence of MG using tga20 mice, a rapid prion model that accumulates fewer pathological features and less PrPres in the infected brain. In C57BL/10 mice we found that MG were excluded from the inoculation site early after infection, but Iba1 positive infiltrating monocytes/macrophage were present. Reducing MG in the brain prior to prion inoculation did not increase susceptibility to prion infection. Short intermittent treatments with PLX5622 in prion infected C57BL/10 mice after 80 dpi were unsuccessful at altering the MG population, gliosis, or survival. Additionally, MG depletion using PLX5622 in tga20 mice had only a minor impact on prion pathogenesis, indicating that the presence of MG might be less important in this fast model with less prion accumulation. In contrast to the benefits of MG against prion disease in late stages of disease, our current experiments suggest MG do not play a role in early prion pathogenesis, clearance, or replication.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Príons/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Doenças Priônicas/patologia , Encéfalo/metabolismo
4.
J Neuroinflammation ; 18(1): 194, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488805

RESUMO

BACKGROUND: Past experiments studying innate immunity in the central nervous system (CNS) utilized microglia obtained from neonatal mouse brain, which differ developmentally from adult microglia. These differences might impact our current understanding of the role of microglia in CNS development, function, and disease. METHODS: Cytokine protein secretion was compared in ex vivo P3 and adult microglial cultures after exposure to agonists for three different toll-like receptors (TLR4, lipopolysaccharide [LPS]; TLR7, imiquimod [IMQ]; and TLR9, CpG Oligodeoxynucleotide [CpG-ODN] 1585). In addition, changes in inflammatory gene expression in ex vivo adult microglia in response to the TLR agonists was assessed. Furthermore, in vivo experiments evaluated changes in gene expression associated with inflammation and TLR signaling in brains of mice with or without treatment with PLX5622 to reduce microglia. RESULTS: Ex vivo adult and P3 microglia increased cytokine secretion when exposed to TLR4 agonist LPS and to TLR7 agonist IMQ. However, adult microglia decreased expression of numerous genes after exposure to TLR 9 agonist CpG-ODN 1585. In contrast, in vivo studies indicated a core group of inflammatory and TLR signaling genes increased when each of the TLR agonists was introduced into the CNS. Reducing microglia in the brain led to decreased expression of various inflammatory and TLR signaling genes. Mice with reduced microglia showed extreme impairment in upregulation of genes after exposure to TLR7 agonist IMQ. CONCLUSIONS: Cultured adult microglia were more reactive than P3 microglia to LPS or IMQ exposure. In vivo results indicated microglial influences on neuroinflammation were agonist specific, with responses to TLR7 agonist IMQ more dysregulated in mice with reduced microglia. Thus, TLR7-mediated innate immune responses in the CNS appeared more dependent on the presence of microglia. Furthermore, partial responses to TLR4 and TLR9 agonists in mice with reduced microglia suggested other cell types in the CNS can compensate for their absence.


Assuntos
Imunidade Inata , Microglia , Animais , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Receptor 4 Toll-Like , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/agonistas
5.
Viruses ; 13(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34372599

RESUMO

In prion diseases, the spread of infectious prions (PrPSc) is thought to occur within nerves and across synapses of the central nervous system (CNS). However, the mechanisms by which PrPSc moves within axons and across nerve synapses remain undetermined. Molecular motors, including kinesins and dyneins, transport many types of intracellular cargo. Kinesin-1C (KIF5C) has been shown to transport vesicles carrying the normal prion protein (PrPC) within axons, but whether KIF5C is involved in PrPSc axonal transport is unknown. The current study tested whether stereotactic inoculation in the striatum of KIF5C knock-out mice (Kif5c-/-) with 0.5 µL volumes of mouse-adapted scrapie strains 22 L or ME7 would result in an altered rate of prion spreading and/or disease timing. Groups of mice injected with each strain were euthanized at either pre-clinical time points or following the development of prion disease. Immunohistochemistry for PrP was performed on brain sections and PrPSc distribution and tempo of spread were compared between mouse strains. In these experiments, no differences in PrPSc spread, distribution or survival times were observed between C57BL/6 and Kif5c-/- mice.


Assuntos
Encéfalo/virologia , Cinesinas/genética , Doenças Priônicas/fisiopatologia , Príons/patogenicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Acta Neuropathol Commun ; 9(1): 17, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33509294

RESUMO

Accumulation of misfolded host proteins is central to neuropathogenesis of numerous human brain diseases including prion and prion-like diseases. Neurons of retina are also affected by these diseases. Previously, our group and others found that prion-induced retinal damage to photoreceptor cells in mice and humans resembled pathology of human retinitis pigmentosa caused by mutations in retinal proteins. Here, using confocal, epifluorescent and electron microscopy we followed deposition of disease-associated prion protein (PrPSc) and its association with damage to critical retinal structures following intracerebral prion inoculation. The earliest time and place of retinal PrPSc deposition was 67 days post-inoculation (dpi) on the inner segment (IS) of cone photoreceptors. At 104 and 118 dpi, PrPSc was associated with the base of cilia and swollen cone inner segments, suggesting ciliopathy as a pathogenic mechanism. By 118 dpi, PrPSc was deposited in both rods and cones which showed rootlet damage in the IS, and photoreceptor cell death was indicated by thinning of the outer nuclear layer. In the outer plexiform layer (OPL) in uninfected mice, normal host PrP (PrPC) was mainly associated with cone bipolar cell processes, but in infected mice, at 118 dpi, PrPSc was detected on cone and rod bipolar cell dendrites extending into ribbon synapses. Loss of ribbon synapses in cone pedicles and rod spherules in the OPL was observed to precede destruction of most rods and cones over the next 2-3 weeks. However, bipolar cells and horizontal cells were less damaged, indicating high selectivity among neurons for injury by prions. PrPSc deposition in cone and rod inner segments and on the bipolar cell processes participating in ribbon synapses appear to be critical early events leading to damage and death of photoreceptors after prion infection. These mechanisms may also occur in human retinitis pigmentosa and prion-like diseases, such as AD.


Assuntos
Cílio Conector dos Fotorreceptores/metabolismo , Proteínas PrPSc/metabolismo , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Morte Celular , Progressão da Doença , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Cílio Conector dos Fotorreceptores/patologia , Cílio Conector dos Fotorreceptores/ultraestrutura , Proteínas PrPSc/administração & dosagem , Células Bipolares da Retina/patologia , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Scrapie/metabolismo , Scrapie/patologia
7.
Neurobiol Dis ; 144: 105057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829029

RESUMO

Tau aggregates consisting of hyperphosphorylated tau fibrils are associated with many neurodegenerative diseases, including Alzheimer's disease, Pick's disease, frontotemporal dementia, and progressive supranuclear palsy. Tau may contribute to the pathogenesis of these diseases, collectively referred to as tauopathies. In human genetic prion diseases, tau aggregates are detected in association with amyloid plaques consisting of prion protein (PrP). However, the role of abnormal tau aggregates in PrP amyloid disease remains unclear. Previously we inoculated scrapie prions into transgenic mice expressing human tau, mouse tau, glycophosphatidylinositol (GPI) anchored PrP, and anchorless PrP. These mice developed both spongiform vacuolar pathology and PrP amyloid pathology, and human tau was detected near PrP amyloid plaques. However, the presence of human tau did not alter the disease tempo or prion-induced neuropathology. In the present study, we tested mice which more closely modeled familial human prion disease. These mice expressed human tau but lacked both mouse tau and GPI-anchored PrP. However, they did produce anchorless PrP, resulting in perivascular PrP amyloid plaques, i.e. cerebral amyloid angiopathy (CAA), without spongiform degeneration. Typical of PrP amyloid disease, the clinical course was very slow in this model. Nevertheless, the accumulation of aggregated, phosphorylated human tau and its association with PrP amyloid plaques failed to alter the timing or course of the clinical disease observed. These data suggest that human tau does not contribute to the pathogenesis of mouse PrP amyloid brain disease and raise the possibility that tau may also not be pathogenic in human PrP amyloid disease.


Assuntos
Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Placa Amiloide/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Scrapie/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Placa Amiloide/patologia , Scrapie/patologia , Proteínas tau/genética
8.
Acta Neuropathol Commun ; 7(1): 48, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909963

RESUMO

Degeneration of photoreceptors in the retina is a major cause of blindness in humans. Often retinal degeneration is due to inheritance of mutations in genes important in photoreceptor (PR) function, but can also be induced by other events including retinal trauma, microvascular disease, virus infection or prion infection. The onset of apoptosis and degeneration of PR neurons correlates with invasion of the PR cellular areas by microglia or monocytes, suggesting a causal role for these cells in pathogenesis of PR degenerative disease. To study the role of microglia in prion-induced retinal disease, we fed prion-infected mice a CSF-1 receptor blocking drug, PLX5622, to eliminate microglia in vivo, and the effects on retinal degeneration were analyzed over time. In mice not receiving drug, the main inflammatory cells invading the degenerating PR areas were microglia, not monocytes. Administration of PLX5622 was highly effective at ablating microglia in retina. However, lack of microglia during prion infection did not prevent degeneration of PR cells. Therefore, microglia were not required for the PR damage process during prion infection. Indeed, mice lacking microglia had slightly faster onset of PR damage. Similar results were seen in C57BL/10 mice and transgenic mice expressing GFP or RFP on microglia and monocytes, respectively. These results were supported by experiments using prion-infected Cx3cr1 knockout mice without PLX5622 treatment, where microglial expansion in retina was delayed, but PR degeneration was not. Contrary to predictions, microglia were not a causative factor in retinal damage by prion infection. Instead, newly generated PrPSc accumulated around the inner segment region of the PR cells and appeared to correlate with initiation of the pathogenic process in the absence of microglia.


Assuntos
Microglia/patologia , Células Fotorreceptoras de Vertebrados/patologia , Proteínas PrPSc/toxicidade , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos
9.
J Gen Virol ; 98(8): 2190-2199, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28758631

RESUMO

Neuroinflammation is a prominent component of several neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, Parkinson's disease, tauopathies, amyotrophic lateral sclerosis and prion diseases. In such conditions, the ability to decrease neuroinflammation by drug therapy may influence disease progression. Statins have been used to treat hyperlipidemia as well as reduce neuroinflammation and oxidative stress in various tissues. In previous studies, treatment of scrapie-infected mice with the type 1 statins, simvastatin or pravastatin, showed a small beneficial effect on survival time. In the current study, to increase the effectiveness of statin therapy, we treated infected mice with atorvastatin, a type 2 statin that has improved pharmacokinetics over many type 1 statins. Treatments with either simvastatin or pravastatin were tested for comparison. We evaluated scrapie-infected mice for protease-resistant PrP (PrPres) accumulation, gliosis, neuroinflammation and time until advanced clinical disease requiring euthanasia. All three statin treatments reduced total serum cholesterol ≥40 % in mice. However, gliosis and PrPres deposition were similar in statin-treated and untreated infected mice. Time to euthanasia due to advanced clinical signs was not changed in statin-treated mice relative to untreated mice, a finding at odds with previous reports. Expression of 84 inflammatory genes involved in neuroinflammation was also quantitated. Seven genes were reduced by pravastatin, and one gene was reduced by atorvastatin. In contrast, simvastatin therapy did not reduce any of the tested genes, but did slightly increase the expression of Ccl2 and Cxcl13. Our studies indicate that none of the three statins tested were effective in reducing scrapie-induced neuroinflammation or neuropathogenesis.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/imunologia , Pravastatina/administração & dosagem , Sinvastatina/administração & dosagem , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/mortalidade , Scrapie
10.
PLoS Pathog ; 12(4): e1005551, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27046083

RESUMO

Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice.


Assuntos
Neuroglia/patologia , Neurônios/patologia , Proteínas PrPSc/genética , Scrapie/genética , Animais , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPSc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Scrapie/patologia
11.
J Gen Virol ; 97(6): 1481-1487, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26935332

RESUMO

Microglial activation is a hallmark of the neuroimmunological response to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion disease. The CX3C chemokine axis consists of fractalkine (CX3CL1) and its receptor (CX3CR1); these are expressed by neurons and microglia respectively, and are known to modulate microglial activation. In prion-infected mice, both Cx3cr1 and Cx3cl1 are altered, suggesting a role in disease. To investigate the influence of CX3C axis signalling on prion disease, we infected Cx3cr1 knockout (Cx3cr1-KO) and control mice with scrapie strains 22L and RML. Deletion of Cx3cr1 had no effect on development of clinical signs or disease incubation period. In addition, comparison of brain tissue from Cx3cr1-KO and control mice revealed no significant differences in cytokine levels, spongiosis, deposition of disease-associated prion protein or microglial activation. Thus, microglial activation during prion infection did not require CX3C axis signalling.


Assuntos
Microglia/patologia , Doenças Priônicas/genética , Doenças Priônicas/patologia , Receptores de Quimiocinas/genética , Animais , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C , Camundongos , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Receptores de Citocinas/deficiência , Receptores de Citocinas/metabolismo , Receptores de HIV/deficiência , Receptores de HIV/metabolismo , Transdução de Sinais
12.
J Virol ; 89(4): 2388-404, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505076

RESUMO

UNLABELLED: Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre- and postclinical stages, we identified 15 previously unreported differentially expressed genes related to inflammation or activation of the STAT signal transduction pathway. Levels for the majority of differentially expressed genes increased with time postinfection. In quantitative immunoblotting experiments of STAT proteins, STAT1α, phosphorylated-STAT1α (pSTAT1α), and pSTAT3 were increased between 94 and 131 days postinfection (p.i.) in brains of mice infected with strain 22L. Furthermore, a select group of STAT-associated genes was increased preclinically during scrapie infection, suggesting early activation of the STAT signal transduction pathway. Comparison of inflammatory markers between mice infected with scrapie strains 22L and RML indicated that the inflammatory responses and gene expression profiles in the brains were strikingly similar, even though these scrapie strains infect different brain regions. The endogenous interleukin-1 receptor antagonist (IL-1Ra), an inflammatory marker, was newly identified as increasing preclinically in our model and therefore might influence scrapie pathogenesis in vivo. However, in IL-1Ra-deficient or overexpressor transgenic mice inoculated with scrapie, neither loss nor overexpression of IL-1Ra demonstrated any observable effect on gliosis, protease-resistant prion protein (PrPres) formation, disease tempo, pathology, or expression of the inflammatory genes analyzed. IMPORTANCE: Prion infection leads to PrPres deposition, gliosis, and neuroinflammation in the central nervous system before signs of clinical illness. Using a scrapie mouse model of prion disease to assess various time points postinoculation, we identified 15 unreported genes that were increased in the brains of scrapie-infected mice and were associated with inflammation and/or JAK-STAT activation. Comparison of mice infected with two scrapie strains (22L and RML), which have dissimilar neuropathologies, indicated that the inflammatory responses and gene expression profiles in the brains were similar. Genes that increased prior to clinical signs might be involved in controlling scrapie infection or in facilitating damage to host tissues. We tested the possible role of the endogenous IL-1Ra, which was increased at 70 days p.i. In scrapie-infected mice deficient in or overexpressing IL-1Ra, there was no observable effect on gliosis, PrPres formation, disease tempo, pathology, or expression of inflammatory genes analyzed.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Scrapie/patologia , Transdução de Sinais , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Gliose/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
13.
Prion ; 7(4): 280-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23851597

RESUMO

Prion protein (PrP) is a cell surface glycoprotein which is required for susceptibility to prion infection and disease. However, PrP is expressed in many different cell types located in numerous organs. Therefore, in addition to its role in prion diseases, PrP may have a large variety of other biological functions involving the nervous system and other systems. We recently showed that susceptibility to kainate-induced seizures differed in Prnp(-/-) and Prnp(+/+) mice on the C57BL/10SnJ background. However, in a genetic complementation experiment a PrP expressing transgene was not able to rescue the Prnp(+/+) phenotype. Thus the apparent effect of PrP on seizures was actually due to genes flanking the Prnp(-/-) gene rather that the Prnp deletion itself. We discuss here several pitfalls in the use of Prnp(-/-) genotypes expressed in various mouse genetic backgrounds to determine the functions of PrP. In particular, the use of Prnp(-/-) mice with heterogeneous mixed genetic backgrounds may have weakened the conclusions of many previous experiments. Use of either co-isogenic mice or congenic mice with more homogeneous genetic backgrounds is now feasible. For congenic mice, the potential problem of flanking genes can be mitigated by the use of appropriate transgene rescue experiments to confirm the conclusions.


Assuntos
Expressão Gênica , Neurônios/metabolismo , Príons/genética , Convulsões/genética , Animais
14.
J Virol ; 86(19): 10377-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787236

RESUMO

Neurodegenerative diseases are typically associated with an activation of glia and an increased level of cytokines. In our previous studies of prion disease, the cytokine response in the brains of clinically sick scrapie-infected mice was restricted to a small group of cytokines, of which IL-12p40, CCL2, and CXCL10 were present at the highest levels. The goal of our current research was to determine the relationship between cytokine responses, gliosis, and neuropathology during prion disease. Here, in time course studies of C57BL/10 mice intracerebrally inoculated with 22L scrapie, abnormal protease-resistant prion protein (PrPres), astrogliosis, and microgliosis were first detected at 40 days after intracerebral scrapie inoculation. In cytokine studies, IL-12p40 was first elevated by 60 days; CCL3, IL-1ß, and CXCL1 were elevated by 80 days; and CCL2 and CCL5 were elevated by 115 days. IL-12p40 showed the most extensive increase throughout disease and was 30-fold above control levels at the terminal stage. Because of the early onset and dramatic elevation of IL-12p40 during scrapie, we investigated whether IL-12p40 contributed to the development of prion disease neuropathogenesis by using three different scrapie strains (22L, RML, 79A) to infect knockout mice in which the gene encoding IL-12p40 was deleted. We also studied knockout mice lacking IL-12p35, which combines with IL-12p40 to form active IL-12 heterodimers. In all instances, knockout mice did not differ from control mice in survival time, clinical tempo, or levels of spongiosis, gliosis, or PrPres in the brain. Thus, neither IL-12p40 nor IL-12p35 molecules were required for prion disease-associated neurodegeneration or neuroinflammation.


Assuntos
Citocinas/biossíntese , Gliose/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Príons/metabolismo , Scrapie/metabolismo , Animais , Encéfalo/patologia , Quimiocina CCL3/metabolismo , Quimiocina CXCL1/metabolismo , Feminino , Deleção de Genes , Inflamação , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Biol Chem ; 287(7): 4628-39, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22179611

RESUMO

Prion diseases or transmissible spongiform encephalopathy diseases are typically characterized by deposition of abnormally folded partially protease-resistant host-derived prion protein (PrPres), which is associated with activated glia and increased release of cytokines. This neuroinflammatory response may play a role in transmissible spongiform encephalopathy pathogenesis. We previously reported that brain homogenates from prion-infected mice induced cytokine protein release in primary astroglial and microglial cell cultures. Here we measured cytokine release by cultured glial cells to determine what factors in infected brain contributed to activation of microglia and astroglia. In assays analyzing IL-12p40 and CCL2 (MCP-1), glial cells were not stimulated in vitro by either PrPres purified from infected mouse brains or prion protein amyloid fibrils produced in vitro. However, significant glial stimulation was induced by clarified scrapie brain homogenates lacking PrPres. This stimulation was greatly reduced both by antibody to cyclophilin A (CyPA), a known mediator of inflammation in peripheral tissues, and by cyclosporine A, a CyPA inhibitor. In biochemical studies, purified truncated CyPA fragments stimulated a pattern of cytokine release by microglia and astroglia similar to that induced by scrapie-infected brain homogenates, whereas purified full-length CyPA was a poor stimulator. This requirement for CyPA truncation was not reported in previous studies of stimulation of peripheral macrophages, endothelial cell cardiomyocytes, and vascular smooth muscle cells. Therefore, truncated CyPA detected in brain following prion infection may have an important role in the activation of brain-derived primary astroglia and microglia in prion disease and perhaps other neurodegenerative or neuroinflammatory diseases.


Assuntos
Astrócitos/enzimologia , Encéfalo/enzimologia , Quimiocina CCL2/metabolismo , Ciclofilina A/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Microglia/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Priônicas/enzimologia , Príons/metabolismo , Animais , Anticorpos/farmacologia , Astrócitos/patologia , Camundongos , Microglia/patologia
16.
PLoS Pathog ; 7(9): e1002275, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980292

RESUMO

Transmissible spongiform encephalopathies (TSE) or prion diseases are neurodegenerative disorders associated with conversion of normal host prion protein (PrP) to a misfolded, protease-resistant form (PrPres). Genetic variations of prion protein in humans and animals can alter susceptibility to both familial and infectious prion diseases. The N171S PrP polymorphism is found mainly in humans of African descent, but its low incidence has precluded study of its possible influence on prion disease. Similar to previous experiments of others, for laboratory studies we created a transgenic model expressing the mouse PrP homolog, PrP-170S, of human PrP-171S. Since PrP polymorphisms can vary in their effects on different TSE diseases, we tested these mice with four different strains of mouse-adapted scrapie. Whereas 22L and ME7 scrapie strains induced typical clinical disease, neuropathology and accumulation of PrPres in all transgenic mice at 99-128 average days post-inoculation, strains RML and 79A produced clinical disease and PrPres formation in only a small subset of mice at very late times. When mice expressing both PrP-170S and PrP-170N were inoculated with RML scrapie, dominant-negative inhibition of disease did not occur, possibly because interaction of strain RML with PrP-170S was minimal. Surprisingly, in vitro PrP conversion using protein misfolding cyclic amplification (PMCA), did not reproduce the in vivo findings, suggesting that the resistance noted in live mice might be due to factors or conditions not present in vitro. These findings suggest that in vivo conversion of PrP-170S by RML and 79A scrapie strains was slow and inefficient. PrP-170S mice may be an example of the conformational selection model where the structure of some prion strains does not favor interactions with PrP molecules expressing certain polymorphisms.


Assuntos
Polimorfismo de Nucleotídeo Único , Príons , Dobramento de Proteína , Scrapie , Animais , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética , Príons/metabolismo , Scrapie/genética , Scrapie/metabolismo , Especificidade da Espécie
17.
Glia ; 59(11): 1684-94, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21766339

RESUMO

Prion protein (PrP) is expressed on a wide variety of cells and plays an important role in the pathogenesis of transmissible spongiform encephalopathies. However, its normal function remains unclear. Mice that do not express PrP exhibit deficits in spatial memory and abnormalities in excitatory neurotransmission suggestive that PrP may function in the glutamatergic synapse. Here, we show that transport of D-aspartate, a nonmetabolized L-glutamate analog, through excitatory amino acid transporters (EAATs) was faster in astrocytes from PrP knockout (PrPKO) mice than in astrocytes from C57BL/10SnJ wild-type (WT) mice. Experiments using EAAT subtype-specific inhibitors demonstrated that in both WT and PrPKO astrocytes, the majority of transport was mediated by EAAT1. Furthermore, PrPKO astrocytes were more effective than WT astrocytes at alleviating L-glutamate-mediated excitotoxic damage in both WT and PrPKO neuronal cultures. Thus, in this in vitro model, PrPKO astrocytes exerted a functional influence on neuronal survival and may therefore influence regulation of glutamatergic neurotransmission in vivo.


Assuntos
Astrócitos/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Príons/fisiologia , Animais , Ácido Aspártico/metabolismo , Western Blotting , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Citometria de Fluxo , Ácido Glutâmico/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Príons/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Sódio/fisiologia
18.
J Virol ; 85(4): 1484-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123371

RESUMO

In nature prion diseases are usually transmitted by extracerebral prion infection, but clinical disease results only after invasion of the central nervous system (CNS). Prion protein (PrP), a host-encoded glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein, is necessary for prion infection and disease. Here, we investigated the role of the anchoring of PrP on prion neuroinvasion by studying various inoculation routes in mice expressing either anchored or anchorless PrP. In control mice with anchored PrP, intracerebral or sciatic nerve inoculation resulted in rapid CNS neuroinvasion and clinical disease (154 to 156 days), and after tongue, ocular, intravenous, or intraperitoneal inoculation, CNS neuroinvasion was only slightly slower (193 to 231 days). In contrast, in anchorless PrP mice, these routes resulted in slow and infrequent CNS neuroinvasion. Only intracerebral inoculation caused brain PrPres, a protease-resistant isoform of PrP, and disease in both types of mice. Thus, anchored PrP was an essential component for the rapid neural spread and CNS neuroinvasion of prion infection.


Assuntos
Membrana Celular/metabolismo , Sistema Nervoso Central/fisiopatologia , Príons/metabolismo , Príons/patogenicidade , Scrapie/fisiopatologia , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/fisiopatologia , Nervo Isquiático/metabolismo , Scrapie/metabolismo , Medula Espinal/metabolismo , Língua/metabolismo
19.
J Virol ; 83(21): 11244-53, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19710140

RESUMO

Activation of microglia and astroglia is seen in many neurodegenerative diseases including prion diseases. Activated glial cells produce cytokines as a protective response against certain pathogens and as part of the host inflammatory response to brain damage. In addition, cytokines might also exacerbate tissue damage initiated by other processes. In the present work using multiplex assays to analyze protein levels of 24 cytokines in scrapie agent-infected C57BL/10 mouse brains, we observed elevation of CCL2, CCL5, CXCL1, CXCL10, granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-gamma), interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, and IL-12p40. Scrapie agent-infected wild-type mice and transgenic mice expressing anchorless prion protein (PrP) had similar cytokine responses in spite of extensive differences in neuropathology. Therefore, these responses may be primarily a reaction to brain damage induced by prion infection rather than specific inducers of a particular type of pathology. To study the roles of astroglia and microglia in these cytokine responses, primary glial cultures were exposed to scrapie agent-infected brain homogenates. Microglia produced only IL-12p40 and CXCL10, whereas astroglia produced these cytokines plus CCL2, CCL3, CCL5, CXCL1, G-CSF, IL-1beta, IL-6, IL-12p70, and IL-13. Glial cytokine responses from wild-type mice and transgenic mice expressing anchorless PrP differed only slightly, but glia from PrP-null mice produced only IL-12p40, indicating that PrP expression was required for scrapie agent induction of other cytokines detected. The difference in cytokine response between microglia and astroglia correlated with 20-fold-higher levels of PrP expression in astroglia versus microglia, suggesting that high-level PrP expression on astroglia might be important for induction of certain cytokines.


Assuntos
Encéfalo , Citocinas/metabolismo , Neuroglia , Proteínas PrPSc/metabolismo , Príons/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Citocinas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/patologia , Proteínas PrPSc/patogenicidade , Príons/genética , Príons/patogenicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Neuroimmunol ; 196(1-2): 16-26, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18396336

RESUMO

Prion diseases are neurodegenerative infections with gliosis and vacuolation. The mechanisms of degeneration remain unclear, but chemokines may be important. In current experiments CCR1 knock-out (KO) mice succumbed more rapidly to scrapie infection than WT controls. Infected KO mice had upregulation of CCL3, a CCR1 ligand, and CCR5, a receptor with specificity for CCL3. Both infected KO and WT mice had upregulation of CCR5-mediated signaling involving activation of Erk1/2 in astrocytes; however, activation was earlier in KO mice suggesting a role in pathogenesis. In both mouse strains activation of the Erk1/2 pathway may lead to astrocyte dysfunction resulting in neurodegeneration.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas PrPSc/imunologia , Doenças Priônicas/enzimologia , Doenças Priônicas/genética , Receptores CCR1/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática/fisiologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas PrPSc/metabolismo , Doenças Priônicas/induzido quimicamente , Doenças Priônicas/patologia , Receptores CCR5/genética , Receptores CCR5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...