Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 158: 108724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714063

RESUMO

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.


Assuntos
Hidrogênio , Hidrogênio/química , Hidrogênio/metabolismo , Catálise , Metais/química , Acetatos/química , Acetatos/metabolismo , Clostridium/metabolismo , Eletrodos , Materiais Biocompatíveis/química , Fontes de Energia Bioelétrica/microbiologia
2.
Microorganisms ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630663

RESUMO

To establish a circular economy, waste streams should be used as a resource to produce valuable products. Biodegradable plastic waste represents a potential feedstock to be microbially recycled via a carboxylate platform. Bioplastics such as polylactic acid food packaging waste (PLA-FPW) are theoretically suitable feedstocks for producing carboxylates. Once feasible, carboxylates such as acetate, n-butyrate, or n-caproate can be used for various applications like lubricants or building blocks for making new bioplastics. In this study, pieces of industrial compostable PLA-FPW material (at 30 or 60 g/L) were added to a watery medium with microbial growth nutrients. This broth was exposed to 70 °C for a pretreatment process to support the hydrolysis of PLA into lactic acid at a maximum rate of 3.0 g/L×d. After 21 days, the broths of the hydrolysis experiments were centrifugated and a part of the supernatant was extracted and prepared for anaerobic fermentation. The mixed microbial culture, originating from a food waste fermentation bioprocess, successfully fermented the hydrolyzed PLA into a spectrum of new C2-C6 multi-carbon carboxylates. n-butyrate was the major product for all fermentations and, on average, 6.5 g/L n-butyrate was obtained from 60 g/L PLA-FPW materials. The wide array of products were likely due to various microbial processes, including lactate conversion into acetate and propionate, as well as lactate-based chain elongation to produce medium-chain carboxylates. The fermentation process did not require pH control. Overall, we showed a proof-of-concept in using real bioplastic waste as feedstock to produce valuable C2-C6 carboxylates via microbial recycling.

3.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048987

RESUMO

Polyhydroxyalkanoates (PHA) polymers are emerging within biobased biodegradable plastic products. To build a circular economy, effective recycling routes should be established for these and other end-of-life bioplastics. This study presents the first steps of a potential PHA recycling route by fermenting hydrolyzed PHA-based bioplastics (Tianan ENMATTM Y1000P; PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) into carboxylates acetate and butyrate. First, three different hydrolysis pretreatment methods under acid, base, and neutral pH conditions were tested. The highest 10% (from 158.8 g COD/L to 16.3 g COD/L) of hydrolysate yield was obtained with the alkaline pretreatment. After filtration to remove the remaining solid materials, 4 g COD/L of the hydrolyzed PHA was used as the substrate with the addition of microbial nutrients for mixed culture fermentation. Due to microbial conversion, 1.71 g/L acetate and 1.20 g/L butyrate were produced. An apparent complete bioconversion from intermediates such as 3-hydroxybutyrate (3-HB) and/or crotonate into carboxylates was found. The overall yields of the combined processes were calculated as 0.07 g acetate/g PHA and 0.049 g butyrate/g PHA. These produced carboxylates can theoretically be used to reproduce PHA or serve many other applications as part of the so-called carboxylate platform.

4.
Anal Chem ; 95(5): 2680-2689, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36715453

RESUMO

We developed a technique based on the use of microsensors to measure pH and H2 gradients during microbial electrosynthesis. The use of 3D electrodes in (bio)electrochemical systems likely results in the occurrence of gradients from the bulk conditions into the electrode. Since these gradients, e.g., with respect to pH and reactant/product concentrations determine the performance of the electrode, it is essential to be able to accurately measure them. Apart from these parameters, also local oxidation-reduction potential and electric field potential were determined in the electrolyte and throughout the 3D porous electrodes. Key was the realization that the presence of an electric field disturbed the measurements obtained by the potentiometric type of microsensor. To overcome the interference on the pH measure, a method was validated where the signal was corrected for the local electric field measured with the electric potential microsensor. The developed method provides a useful tool for studies about electrode design, reactor engineering, measuring gradients in electroactive biofilms, and flow dynamics in and around 3D porous electrodes of (bio)electrochemical systems.

6.
Biotechnol Biofuels ; 14(1): 232, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872602

RESUMO

BACKGROUND: Biotechnological processes for efficient resource recovery from residual materials rely on complex conversions carried out by reactor microbiomes. Chain elongation microbiomes produce valuable medium-chain carboxylates (MCC) that can be used as biobased starting materials in the chemical, agriculture and food industry. In this study, sunflower oil is used as an application-compatible solvent to accumulate microbially produced MCC during extractive lactate-based chain elongation. The MCC-enriched solvent is harvested as a potential novel product for direct application without further MCC purification, e.g., direct use for animal nutrition. Sunflower oil biocompatibility, in situ extraction performance and effects on chain elongation were evaluated in batch and continuous experiments. Microbial community composition and dynamics of continuous experiments were analyzed based on 16S rRNA gene sequencing data. Potential applications of MCC-enriched solvents along with future research directions are discussed. RESULTS: Sunflower oil showed high MCC extraction specificity and similar biocompatibility to oleyl alcohol in batch extractive fermentation of lactate and food waste. Continuous chain elongation microbiomes produced the MCC n-caproate (nC6) and n-caprylate (nC8) from L-lactate and acetate at pH 5.0 standing high undissociated n-caproic acid concentrations (3 g L-1). Extractive chain elongation with sunflower oil relieved apparent toxicity of MCC and production rates and selectivities reached maximum values of 5.16 ± 0.41 g nC6 L-1 d-1 (MCC: 11.5 g COD L-1 d-1) and 84 ± 5% (e- eq MCC per e- eq products), respectively. MCC were selectively enriched in sunflower oil to concentrations up to 72 g nC6 L-1 and 3 g nC8 L-1, equivalent to 8.3 wt% in MCC-enriched sunflower oil. Fermentation at pH 7.0 produced propionate and n-butyrate instead of MCC. Sunflower oil showed stable linoleic and oleic acids composition during extractive chain elongation regardless of pH conditions. Reactor microbiomes showed reduced diversity at pH 5.0 with MCC production linked to Caproiciproducens co-occurring with Clostridium tyrobutyricum, Clostridium luticellarii and Lactobacillus species. Abundant taxa at pH 7.0 were Anaerotignum, Lachnospiraceae and Sporoanaerobacter. CONCLUSIONS: Sunflower oil is a suitable biobased solvent to selectively concentrate MCC. Extractive reactor microbiomes produced MCC with improved selectivity and production rate, while downstream processing complexity was reduced. Potential applications of MCC-enriched solvents may include feed, food and biofuels purposes.

7.
Front Bioeng Biotechnol ; 9: 697439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485254

RESUMO

Chain elongation fermentation allows for the synthesis of biobased chemicals from complex organic residue streams. To expand the product spectrum of chain elongation technology and its application range we investigated 1) how to increase selectivity towards branched chain elongation and 2) whether alternative branched carboxylates such as branched valerates can be used as electron acceptors. Elongation of isobutyrate elongation towards 4-methyl-pentanoate was achieved with a selectivity of 27% (of total products, based on carbon atoms) in a continuous system that operated under CO2 and acetate limited conditions. Increasing the CO2 load led to more in situ acetate formation that increased overall chain elongation rate but decreased the selectivity of branched chain elongation. A part of this acetate formation was related to direct ethanol oxidation that seemed to be thermodynamically coupled to hydrogenotrophic carboxylate reduction to corresponding alcohols. Several alcohols including isobutanol and n-hexanol were formed. The microbiome from the continuous reactor was also able to form small amounts of 5-methyl-hexanoate likely from 3-methyl-butanoate and ethanol as substrate in batch experiments. The highest achieved concentration of isoheptanoate was 6.4 ± 0.9 mM Carbon, or 118 ± 17 mg/L, which contributed for 7% to the total amount of products (based on carbon atoms). The formation of isoheptanoate was dependent on the isoform of branched valerate. With 3-methyl-butanoate as substrate 5-methylhexanoate was formed, whereas a racemic mixture of L/D 2-methyl-butanoate did not lead to an elongated product. When isobutyrate and isovalerate were added simultaneously as substrates there was a large preference for elongation of isobutyrate over isovalerate. Overall, this work showed that chain elongation microbiomes can be further adapted with supplement of branched-electron acceptors towards the formation of iso-caproate and iso-heptanoate as well as that longer chain alcohol formation can be stimulated.

8.
Front Bioeng Biotechnol ; 9: 666582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211964

RESUMO

Medium-chain carboxylates (MCC) derived from biomass biorefining are attractive biochemicals to uncouple the production of a wide array of products from the use of non-renewable sources. Biological conversion of biomass-derived lactate during secondary fermentation can be steered to produce a variety of MCC through chain elongation. We explored the effects of zero-valent iron nanoparticles (nZVI) and lactate enantiomers on substrate consumption, product formation and microbiome composition in batch lactate-based chain elongation. In abiotic tests, nZVI supported chemical hydrolysis of lactate oligomers present in concentrated lactic acid. In fermentation experiments, nZVI created favorable conditions for either chain-elongating or propionate-producing microbiomes in a dose-dependent manner. Improved lactate conversion rates and n-caproate production were promoted at 0.5-2 g nZVI⋅L-1 while propionate formation became relevant at ≥ 3.5 g nZVI⋅L-1. Even-chain carboxylates (n-butyrate) were produced when using enantiopure and racemic lactate with lactate conversion rates increased in nZVI presence (1 g⋅L-1). Consumption of hydrogen and carbon dioxide was observed late in the incubations and correlated with acetate formation or substrate conversion to elongated products in the presence of nZVI. Lactate racemization was observed during chain elongation while isomerization to D-lactate was detected during propionate formation. Clostridium luticellarii, Caproiciproducens, and Ruminococcaceae related species were associated with n-valerate and n-caproate production while propionate was likely produced through the acrylate pathway by Clostridium novyi. The enrichment of different potential n-butyrate producers (Clostridium tyrobutyricum, Lachnospiraceae, Oscillibacter, Sedimentibacter) was affected by nZVI presence and concentrations. Possible theories and mechanisms underlying the effects of nZVI on substrate conversion and microbiome composition are discussed. An outlook is provided to integrate (bio)electrochemical systems to recycle (n)ZVI and provide an alternative reducing power agent as durable control method.

9.
Chempluschem ; 86(5): 763-777, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33973736

RESUMO

Electrocatalytic metals and microorganisms can be combined for CO2 conversion in microbial electrosynthesis (MES). However, a systematic investigation on the nature of interactions between metals and MES is still lacking. To investigate this nature, we integrated a copper electrocatalyst, converting CO2 to formate, with microorganisms, converting CO2 to acetate. A co-catalytic (i. e. metabolic) relationship was evident, as up to 140 mg L-1 of formate was produced solely by copper oxide, while formate was also evidently produced by copper and consumed by microorganisms producing acetate. Due to non-metabolic interactions, current density decreased by over 4 times, though acetate yield increased by 3.3 times. Despite the antimicrobial role of copper, biofilm formation was possible on a pure copper surface. Overall, we show for the first time that a CO2 -reducing copper electrocatalyst can be combined with MES under biological conditions, resulting in metabolic and non-metabolic interactions.


Assuntos
Cobre/química , Biocatálise , Biofilmes/crescimento & desenvolvimento , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cupriavidus necator/metabolismo , Cupriavidus necator/fisiologia , Eletrodos , Transporte de Elétrons , Formiatos/química , Formiatos/metabolismo
10.
J Environ Manage ; 258: 110008, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929052

RESUMO

Microbial chain elongation (MCE) is a bioprocess that could utilise a mixed-culture fermentation to valorise organic waste. MCE converting ethanol and short chain fatty acids (SCFA; derived from organic waste) to caproate has been studied extensively and implemented. Recent studies demonstrated the conversion of SCFAs and methanol or ethanol into isomerised fatty acids as novel products, which may expand the MCE application and market. Integrating caproate and isomerised fatty acid production in one reactor system is theoretically feasible given the employment of a mixed culture and may increase the economic competence of MCE; however, the feasibility of such has never been demonstrated. This study investigated the feasibility of using two electron donors, i.e. methanol and ethanol, for upgrading SCFAs into isobutyrate and caproate concurrently in MCE Results show that supplying methanol and ethanol in MCE simultaneously converted acetate and/or butyrate into caproate and isobutyrate, by a mixed-culture microbiome. The butyrate supplement stimulated the caproate production rate from 1.5 to 2.6 g/L.day and induced isobutyrate production (1.5 g/L.day). Further increasing ethanol feeding rate from 140 to 280 mmol carbon per litre per day enhanced the direct use of butyrate for caproate production, which improved the caproate production rate to 5.9 g/L.day. Overall, the integration of two electron donors, i.e. ethanol and methanol, in one chain-elongation reactor system for upgrading SCFAs was demonstrated. As such, MCE could be applied to valorise organic waste (water) streams into a wider variety of value-added biochemical.


Assuntos
Caproatos , Etanol , Ácidos Graxos , Ácidos Graxos Voláteis , Fermentação , Isobutiratos , Metanol
11.
Water Res ; 169: 115215, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678751

RESUMO

The production of biochemicals from renewables through biorefinery processes is important to reduce the anthropogenic impact on the environment. Chain elongation processes based on microbiomes have been successfully developed to produce medium-chain fatty acids (MCFA) from organic waste streams. Yet, the sustainability of chain elongation can still be improved by reducing the use of electron donors and additional chemicals. This work aimed to couple lactate production and subsequent chain elongation to decrease chemicals input such as electron donors and hydroxide for pH control in repeated-batch food waste fermentation. Food waste with adjusted pH was used as substrate and fermentation proceeded without pH control. During fermentation, lactate was first formed through the homolactic pathway and then converted to fatty acids (FA), mainly n-butyrate and n-caproate. The highest n-caproate carbon selectivities (mmol C/mmol CFA) and production rates were 38% and 4.2 g COD/L-d, respectively. Hydroxide input was reduced over time to a minimum of 0.47 mol OH-/mol MCFA or 0.79 mol OH-/kg CODFA. Lactate was a key electron donor for chain elongation and its conversion was observed at pH as low as 4.3. The microbiome enriched in this work was dominated by Lactobacillus spp. and Caproiciproducens spp. The high abundance of Caproiciproducens spp. and their co-occurrence with Lactobacillus spp. suggest Caproiciproducens spp. used lactate as electron donor for chain elongation. This work shows the production of n-caproate from food waste with decreased use of hydroxide and no use of exogenous electron donors.


Assuntos
Alimentos , Eliminação de Resíduos , Reatores Biológicos , Butiratos , Ácidos Graxos , Fermentação
12.
Sensors (Basel) ; 19(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731543

RESUMO

A Plant Microbial Fuel Cell (Plant-MFCs) has been studied both in the lab and in a field. So far, field studies were limited to a more conventional Plant-MFC design, which submerges the anode in the soil and places the cathode above the soil surface. However, for a large scale application a tubular Plant-MFC is considered more practical since it needs no topsoil excavation. In this study, 1 m length tubular design Plant-MFC was installed in triplicate in a paddy field located in West Kalimantan, Indonesia. The Plant-MFC reactors were operated for four growing seasons. The rice paddy was grown in a standard cultivation process without any additional treatment due to the reactor instalation. An online data acquisition using LoRa technology was developed to investigate the performance of the tubular Plant-MFC over the final whole rice paddy growing season. Overall, the four crop seasons, the Plant-MFC installation did not show a complete detrimental negative effect on rice paddy growth. Based on continuous data analysis during the fourth crop season, a continuous electricity generation was achieved during a wet period in the crop season. Electricity generation dynamics were observed before, during and after the wet periods that were explained by paddy field management. A maximum daily average density from the triplicate Plant-MFCs reached 9.6 mW/m2 plant growth area. In one crop season, 9.5-15 Wh/m2 electricity can be continuously generated at an average of 0.4 ± 0.1 mW per meter tube. The Plant-MFC also shows a potential to be used as a bio sensor, e.g., rain event indicator, during a dry period between the crop seasons.


Assuntos
Fontes de Energia Bioelétrica , Oryza/crescimento & desenvolvimento , Técnicas Biossensoriais , Produtos Agrícolas/crescimento & desenvolvimento , Fontes de Energia Elétrica , Desenho de Equipamento , Indonésia , Sistemas On-Line , Chuva , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Microbiologia do Solo
13.
Front Microbiol ; 10: 934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156566

RESUMO

Marine sediment has a great potential to generate electricity with a bioelectrochemical system (BES) like the microbial fuel cell (MFC). In this study, we investigated the potential of marine sediment and activated carbon (AC) to generate and store electricity. Both internal and external energy supply was validated for storage behavior. Four types of anode electrode compositions were investigated. Two types were mixtures of different volumes of AC and Dutch Eastern Scheldt marine sediment (67% AC and 33% AC) and the others two were 100% AC or 100% marine sediment based. Each composition was duplicated. Operating these BES's under MFC mode with solely marine sediment as the anode electron donor resulted in the creation of a bio-battery. The recharge time of such bio-battery does depend on the fuel content and its usage. The results show that by usage of marine sediment and AC electricity was generated and stored. The 100% AC and the 67% AC mixed with marine sediment electrode were over long term potentiostatic controlled at -100 mV vs. Ag/AgCl which resulted in a cathodic current and an applied voltage. After switching back to the MFC operation mode at 1000 Ω external load, the electrode turned into an anode and electricity was generated. This supports the hypothesis that external supply electrical energy was recovered via bi-directional electron transfer. With open cell voltage experiments these AC marine bioanodes showed internal supplied electric charge storage up to 100 mC at short self-charging times (10 and 60 s) and up to 2.4°C (3,666 C/m3 anode) at long charging time (1 h). Using a hypothetical cell voltage of 0.2 V, this value represents an internal electrical storage density of 0.3 mWh/kg AC marine anode. Furthermore it was remarkable that the BES with 100% marine sediment based electrode also acted like a capacitor similar to the charge storage behaviors of the AC based bioanodes with a maximum volumetric storage of 1,373 C/m3 anode. These insights give opportunities to apply such BES systems as e.g., ex situ bio-battery to store and use electricity for off-grid purpose in remote areas.

14.
Environ Sci Technol ; 53(13): 7704-7713, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244077

RESUMO

Chain elongation fermentation can be used to convert organic residues into biobased chemicals. This research aimed to develop a bioprocess for branched medium chain fatty acids (MCFAs) production. A long-term continuous reactor experiment showed that iso-caproate (4-methyl pentanoate, i-C6) can be produced via ethanol based chain elongation. The enriched microbiome formed iso-caproate from iso-butyrate at a rate of 44 ± 6 mmol C L-1 day-1 during the last phase. This amounted to 20% of all formed compounds based on carbon atoms. The main fermentation product was n-caproate (55% of all carbon), as a result of acetate and subsequent n-butyrate elongation. The microbiome preferred straight-chain elongation over branched-chain elongation. Lowering the acetate concentration in the influent led to an increase of excessive ethanol oxidation (EEO) into electron equivalents (e.g., H2) and acetate. The formed acetate in turn stimulated straight chain elongation, but the resulting lower net acetate supply rate towards straight chain elongation led to an increased selectivity towards and productivity of i-C6. The electrons produced via oxidation routes and chain elongation were apparently utilized by hydrogenotrophic methanogens, homoacetogens, and carboxylate-to-alcohol reducing bacteria. Further improvements could be achieved if the acetate-producing EEO was minimized and limitations of ethanol and CO2 were prevented.


Assuntos
Butiratos , Caproatos , Etanol , Ácidos Graxos , Fermentação
15.
Biotechnol Biofuels ; 12: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149028

RESUMO

BACKGROUND: Chain elongation forms a new platform technology for the circular production of biobased chemicals from renewable carbon and energy sources. This study aimed to develop a continuous methanol-based chain elongation process for the open-culture production of a new-generation biofuel precursor and potential platform chemical: n-valerate. Propionate was used as a substrate for chain elongation to n-valerate in an anaerobic open-culture bioreactor. In addition, the co-production of n- and iso-butyrate in addition to n-valerate via, respectively, acetate and propionate elongation was investigated. RESULTS: n-Valerate was produced during batch and continuous experiments with a pH in the range 5.5-5.8 and a hydraulic retention time of 95 h. Decreasing the pH from 5.8 to 5.5 caused an increase of the selectivity for n-valerate formation (from 58 up to 70 wt%) during methanol-based propionate elongation. n-Valerate and both n- and iso-butyrate were produced during simultaneous methanol-based elongation of propionate and acetate. Propionate was within the open-culture preferred over acetate as a substrate with 10-30% more consumption. Increasing the methanol concentration in the influent (from 250 to 400 mM) resulted in a higher productivity (from 45 to 58 mmol C/L/day), but a lower relative product selectivity (from 49 to 43 wt%) of n-valerate. The addition of acetate as a substrate did not change the average n-valerate productivities. Within the continuous bioreactor experiments, 6 to 17 wt% of formed products was methane. The microbial community during all steady-states in both methanol-based elongation bioreactors was dominated by species related to Clostridium luticellarii and Candidatus Methanogranum. C. luticellarii is the main candidate for n-valerate formation from methanol and propionate. CONCLUSIONS: n-Valerate was for the first time proven to be produced from propionate and methanol by an open-culture bioreactor. Methanogenic activity can be inhibited by decreasing the pH, and the n-valerate productivity can be improved by increasing the methanol concentration. The developed process can be integrated with various biorefinery processes from thermochemical, (bio)electrochemical, photovoltaic and microbial technologies. The findings from this study form a useful tool to steer the process of biological production of chemicals from biomass and other carbon and energy sources.

16.
ChemistryOpen ; 7(11): 878-884, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30410852

RESUMO

The conversion of organic waste streams into carboxylic acids as renewable feedstocks results in relatively dilute aqueous streams. Carboxylic acids can be recovered from such streams by using liquid-liquid extraction. Hydrophobic ionic liquids (ILs) are novel extractants that can be used for carboxylic acid recovery. To integrate these ILs as in situ extractants in several biotechnological applications, the IL must be compatible with the bioprocesses. Herein the ILs [P666,14][oleate] and [N8888][oleate] were synthesized in water and their bioprocess compatibility was assessed by temporary exposure to an aqueous phase that contained methanogenic granular sludge. After transfer of the sludge into fresh medium, [P666,14][oleate]-exposed granules were completely inhibited. Granules exposed to [N8888][oleate] sustained anaerobic digestion activity, albeit moderately reduced. The IL contaminants, bromide (5-500 ppm) and oleate (10-4000 ppm), were shown not to inhibit the methanogenic conversion of acetate. [P666,14] was identified as a bioprocess-incompatible component. However, our results showed that [N8888][oleate] was bioprocess compatible and, therefore, has potential applications in bioprocesses.

17.
ACS Sustain Chem Eng ; 6(6): 7499-7506, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29910994

RESUMO

Chain elongation is an open-culture fermentation process that facilitates conversion of organic residues with an additional electron donor, such as ethanol, into valuable n-caproate. Open-culture processes are catalyzed by an undefined consortium of microorganisms which typically also bring undesired (competing) processes. Inhibition of competing processes, such as syntrophic ethanol oxidation, will lead to a more selective n-caproate production process. In this study, we investigated the effect of n-caproate concentration on the specific activity of chain elongation and competing processes using batch inhibition assays. With "synthetic medium sludge" (originally operating at 3.4 g/L n-caproate), syntrophic ethanol oxidation was proportionally inhibited by n-caproate until 45% inhibition at 20 g/L n-caproate. Hydrogenotrophic methanogenesis was for 58% inhibited at 20 g/L n-caproate. Chain elongation of volatile fatty acids (volatile fatty acid upgrading; the desired process), was completely inhibited at 20 g/L n-caproate with all tested sludge types. "Adapted sludge" (operating at 23.2 g/L n-caproate) showed a 10 times higher volatile fatty acid upgrading activity at 15 g/L n-caproate compared to "nonadapted sludge" (operating at 7.1 g/L n-caproate). This shows that open cultures do adapt to perform chain elongation at high n-caproate concentrations which likely inhibits syntrophic ethanol oxidation through hydrogenotrophic methanogenesis. As such, we provide supporting evidence that the formation of n-caproate inhibits syntrophic ethanol oxidation which leads to a more selective medium chain fatty acid production process.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29755978

RESUMO

Introduction: Medium chain fatty acids (MCFAs), such as n-caproate, are potential valuable platform chemicals. MCFAs can be produced from low-grade organic residues by anaerobic reactor microbiomes through two subsequent biological processes: hydrolysis combined with acidogenesis and chain elongation. Continuous chain elongation with organic residues becomes effective when the targeted MCFA(s) are produced at high concentrations and rates, while excessive ethanol oxidation and base consumption are limited. The objective of this study was to develop an effective continuous chain elongation process with hydrolyzed and acidified food waste and additional ethanol. Results: We fed acidified food waste (AFW) and ethanol to an anaerobic reactor while operating the reactor at long (4 d) and at short (1 d) hydraulic retention time (HRT). At long HRT, n-caproate was continuously produced (5.5 g/L/d) at an average concentration of 23.4 g/L. The highest n-caproate concentration was 25.7 g/L which is the highest reported n-caproate concentration in a chain elongation process to date. Compared to short HRT (7.1 g/L n-caproate at 5.6 g/L/d), long HRT resulted in 6.2 times less excessive ethanol oxidation. This led to a two times lower ethanol consumption and a two times lower base consumption per produced MCFA at long HRT compared to short HRT. Conclusions: Chain elongation from AFW and ethanol is more effective at long HRT than at short HRT not only because it results in a higher concentration of MCFAs but also because it leads to a more efficient use of ethanol and base. The HRT did not influence the n-caproate production rate. The obtained n-caproate concentration is more than twice as high as the maximum solubility of n-caproic acid in water which is beneficial for its separation from the fermentation broth. This study does not only set the record on the highest n-caproate concentration observed in a chain elongation process to date, it notably demonstrates that such high concentrations can be obtained from AFW under practical circumstances in a continuous process.

19.
Environ Sci Technol ; 52(3): 1496-1505, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29304274

RESUMO

Chain elongation is an open-culture biotechnological process which converts volatile fatty acids (VFAs) into medium chain fatty acids (MCFAs) using ethanol and other reduced substrates. The objective of this study was to investigate the quantitative effect of CO2 loading rate on ethanol usages in a chain elongation process. We supplied different rates of CO2 to a continuously stirred anaerobic reactor, fed with ethanol and propionate. Ethanol was used to upgrade ethanol itself into caproate and to upgrade the supplied VFA (propionate) into heptanoate. A high CO2 loading rate (2.5 LCO2·L-1·d-1) stimulated excessive ethanol oxidation (EEO; up to 29%) which resulted in a high caproate production (10.8 g·L-1·d-1). A low CO2 loading rate (0.5 LCO2·L-1·d-1) reduced EEO (16%) and caproate production (2.9 g·L-1·d-1). Heptanoate production by VFA upgrading remained constant (∼1.8 g·L-1·d-1) at CO2 loading rates higher than or equal to 1 LCO2·L-1·d-1. CO2 was likely essential for growth of chain elongating microorganisms while it also stimulated syntrophic ethanol oxidation. A high CO2 loading rate must be selected to upgrade ethanol (e.g., from lignocellulosic bioethanol) into MCFAs whereas lower CO2 loading rates must be selected to upgrade VFAs (e.g., from acidified organic residues) into MCFAs while minimizing use of costly ethanol.


Assuntos
Reatores Biológicos , Dióxido de Carbono , Biotecnologia , Etanol , Ácidos Graxos Voláteis
20.
Faraday Discuss ; 202: 433-449, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28657636

RESUMO

The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L-1 d-1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L-1 d-1. In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas , Biomassa , Dióxido de Carbono/química , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...