Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635351

RESUMO

Overcoming the diffraction limit, which enables focusing much less than the wavelength, requires tailoring the evanescent spectrum of an aperture's field distribution. We model and simulate a corrugated near field plate, which can generate a sub-wavelength focus in inhomogeneous background media. All reactive coupling, between the metasurface near field plate and the focusing domain and among the corrugations in the metasurface, is taken into consideration with the finite element method, which we solve in combination with a constraint to generate a desired focus. Various geometries for the near field plate are considered and we demonstrate that the proposed method can effectively create a deeply sub-wavelength focus within a layered medium having properties resembling brain tissue. Such a device could find use as a detector of biological signals or for hyperthermic treatment near the skin surface.

2.
Sci Rep ; 9(1): 4630, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874574

RESUMO

Here we consider a tunable superconducting cavity that can be used either as a tunable coupler to a qubit inside the cavity or as a tunable low noise, low temperature, RF filter. Our design consists of an array of radio-frequency superconducting quantum interference devices (rf SQUIDs) inside a superconducting cavity. This forms a tunable metamaterial structure which couples to the cavity through its magnetic plasma frequency. By tuning the resonant frequency of the metamaterial through an applied magnetic flux, one can tune the cavity mode profile. This allows us to detune the cavity initially centered at 5.593 GHz by over 200 MHz. The maximum quality factor approaches that of the empty cavity, which is 4.5 × 106. The metamaterial electromagnetic response is controlled via a low-frequency or dc magnetic flux bias, and we present a control line architecture that is capable of applying sufficient magnetic flux bias with minimal parasitic coupling. Together this design allows for an in-situ tunable cavity which enables low-temperature quantum control applications.

3.
Opt Express ; 23(9): 11586-99, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969252

RESUMO

We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design.

4.
Phys Rev Lett ; 110(21): 217404, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745933

RESUMO

We demonstrate nonlinear metamaterial split ring resonators (SRRs) on GaAs at terahertz frequencies. For SRRs on doped GaAs films, incident terahertz radiation with peak fields of ~20-160 kV/cm drives intervalley scattering. This reduces the carrier mobility and enhances the SRR LC response due to a conductivity decrease in the doped thin film. Above ~160 kV/cm, electric field enhancement within the SRR gaps leads to efficient impact ionization, increasing the carrier density and the conductivity which, in turn, suppresses the SRR resonance. We demonstrate an increase of up to 10 orders of magnitude in the carrier density in the SRR gaps on semi-insulating GaAs. Furthermore, we show that the effective permittivity can be swept from negative to positive values with an increasing terahertz field strength in the impact ionization regime, enabling new possibilities for nonlinear metamaterials.

5.
Nature ; 487(7407): 345-8, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22801506

RESUMO

Electron-electron interactions can render an otherwise conducting material insulating, with the insulator-metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator-metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator-metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

6.
Opt Express ; 20(10): 11277-87, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565750

RESUMO

We report on direct measurements of the magnetic near-field of metamaterial split ring resonators at terahertz frequencies using a magnetic field sensitive material. Specifically, planar split ring resonators are fabricated on a single magneto-optically active terbium gallium garnet crystal. Normally incident terahertz radiation couples to the resonator inducing a magnetic dipole oscillating perpendicular to the crystal surface. Faraday rotation of the polarisation of a near-infrared probe beam directly measures the magnetic near-field with 100 femtosecond temporal resolution and (λ/200) spatial resolution. Numerical simulations suggest that the magnetic field can be enhanced in the plane of the resonator by as much as a factor of 200 compared to the incident field strength. Our results provide a route towards hybrid devices for dynamic magneto-active control of light such as isolators, and highlight the utility of split ring resonators as compact probes of magnetic phenomena in condensed matter.


Assuntos
Radiação Terahertz , Simulação por Computador , Desenho de Equipamento , Gálio/química , Luz , Campos Magnéticos , Magnetismo , Física/métodos , Refratometria/métodos , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Térbio/química , Fatores de Tempo
7.
Opt Express ; 20(8): 8551-67, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513564

RESUMO

We investigate the interaction between terahertz waves and resonant antennas with sub-cycle temporal and λ/100 spatial resolution. Depositing antennas on a LiNbO3 waveguide enables non-invasive electro-optic imaging, quantitative field characterization, and direct measurement of field enhancement (up to 40-fold). The spectral response is determined over a bandwidth spanning from DC across multiple resonances, and distinct behavior is observed in the near- and far-field. The scaling of enhancement and resonant frequency with gap size and antenna length agrees well with simulations.

8.
Opt Express ; 20(1): 635-43, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274387

RESUMO

We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.


Assuntos
Manufaturas , Modelos Teóricos , Refratometria/métodos , Simulação por Computador , Módulo de Elasticidade , Luz , Espalhamento de Radiação , Radiação Terahertz
9.
Opt Express ; 19(22): 21620-6, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109011

RESUMO

We have designed, fabricated, and characterized metamaterial enhanced bimaterial cantilever pixels for far-infrared detection. Local heating due to absorption from split ring resonators (SRRs) incorporated directly onto the cantilever pixels leads to mechanical deflection which is readily detected with visible light. Highly responsive pixels have been fabricated for detection at 95 GHz and 693 GHz, demonstrating the frequency agility of our technique. We have obtained single pixel responsivities as high as 16,500 V/W and noise equivalent powers of 10(-8) W/Hz(1/2) with these first-generation devices.

10.
Opt Express ; 19(13): 12619-27, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716502

RESUMO

We present a detailed study of non-planar or 'stand-up' split ring resonators operating at terahertz frequencies. Based on a facile multilayer electroplating fabrication, this technique can create large area split ring resonators on both rigid substrates and conformally compliant structures. In agreement with simulation results, the characterization of these metamaterials shows a strong response induced purely by the magnetic field. The retrieved parameters also exhibit negative permeability values over a broad frequency span. The extracted parameters exhibit bianisotropy due to the symmetry breaking of the substrate, and this effect is investigated for both single and broad side coupled split rings. Our 3D metamaterial examples pave the way towards numerous potential applications in the terahertz region of the spectrum.


Assuntos
Galvanoplastia/métodos , Microtecnologia/métodos , Refratometria/métodos , Imagem Terahertz/métodos , Radiação Terahertz , Microscopia Eletrônica de Varredura , Radiação , Silício/química
12.
Opt Express ; 19(10): 9968-75, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643254

RESUMO

We present a computational and experimental study of a novel terahertz (THz) device resulting from hybridization of metamaterials with pseudomorphic high electron mobility transistors (HEMTs), fabricated in a commercial gallium arsenide (GaAs) process. Monolithic integration of transistors into each unit cell permits modulation at the metamaterial resonant frequency of 0.46 THz. Characterization is performed using a THz time-domain spectrometer (THz-TDS) and we demonstrate switching values over 30%, and THz modulation at frequencies up to 10 megahertz (MHz). Our results demonstrate the viability of incorporating metamaterials into mature semiconductor technologies and establish a new path toward achieving electrically tunable THz devices.

14.
Opt Express ; 17(1): 136-49, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19129881

RESUMO

We have fabricated a quarter-wave plate from a single layer of birefringent electric split-ring resonators (ELC). For comparison, an appropriately scaled double layer meanderline structure was fabricated. At the design frequency of 639 GHz, the ELC structure achieves 99.9% circular polarization while the meanderline achieves 99.6%. The me-anderline displays a larger bandwidth of operation, attaining over 99% circular polarization from 615 - 743 GHz, while the ELC achieves 99% from 626 - 660 GHz. However, both are broad enough for use with CW sources making ELCs a more attractive choice due to the ease of fabrication. Both samples are free standing with a total thickness of 70 microm for the meanderline structure and a mere 20 microm for the ELC highlighting the large degree of birefringence exhibited with metamaterial structures.


Assuntos
Birrefringência , Teste de Materiais/métodos , Acústica , Cristalização , Eletricidade , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Desenho de Equipamento , Teste de Materiais/instrumentação , Microscopia , Radiação , Semicondutores , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...