Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Mol Diagn ; 24(11): 1207-1216, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116701

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal amplification assay that has been ubiquitously utilized in the detection of infectious agents. Like any nucleic acid amplification technology, primer-template complementarity is critical to RPA reaction success. Mismatches arising in the primer-template complex are known to impact reaction kinetics, invalidate downstream analysis, such as nucleic acid quantification, and result in false negatives if used in a diagnostic capacity. Although the impact of specific primer-template mismatches has been well characterized for techniques such as PCR, characterization remains limited for RPA. Through our study, we systematically characterize the impact of mismatches on the RPA reaction, when located in the 3'-anchor region of the primer-template complex. Our investigation identified that the nucleotides involved, as well as position of each mismatch, influence the size of the impact, with terminal cytosine-thymine and guanine-adenine mismatches being the most detrimental. The presence of some mismatch combinations, such as a penultimate cytosine-cytosine and a terminal cytosine-adenine mismatch pairing, led to complete RPA reaction inhibition. Through the successful characterization of 315 mismatch combinations, researchers can optimize their RPA assay accordingly and seek to implement RPA technology for rapid, in-field genotyping.


Assuntos
Ácidos Nucleicos , Recombinases , Humanos , Recombinases/genética , Primers do DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Citosina , Adenina , Sensibilidade e Especificidade
3.
Front Vet Sci ; 9: 805382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400111

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative agent of porcine pleuropneumonia, resulting in high economic impact worldwide. There are currently 19 known serovars of APP, with different ones being predominant in specific geographic regions. Outbreaks of pleuropneumonia, characterized by sudden respiratory difficulties and high mortality, can occur when infected pigs are brought into naïve herds, or by those carrying different serovars. Good biosecurity measures include regular diagnostic testing for surveillance purposes. Current gold standard diagnostic techniques lack sensitivity (bacterial culture), require expensive thermocycling machinery (PCR) and are time consuming (culture and PCR). Here we describe the development of an isothermal point-of-care diagnostic test - utilizing recombinase polymerase amplification (RPA) for the detection of APP, targeting the species-specific apxIVA gene. Our APP-RPA diagnostic test achieved a sensitivity of 10 copies/µL using a strain of APP serovar 8, which is the most prevalent serovar in the UK. Additionally, our APP-RPA assay achieved a clinical sensitivity and specificity of 84.3 and 100%, respectively, across 61 extracted clinical samples obtained from farms located in England and Portugal. Using a small subset (n = 14) of the lung tissue samples, we achieved a clinical sensitivity and specificity of 76.9 and 100%, respectively) using lung imprints made on FTA cards tested directly in the APP-RPA reaction. Our results demonstrate that our APP-RPA assay enables a suitable rapid and sensitive screening tool for this important veterinary pathogen.

4.
J Med Microbiol ; 71(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35262474

RESUMO

The Gram-negative bacterium Actinobacillus pleuropneumoniae is the causative agent of pleuropneumonia in pigs, its only known natural host. Typical symptoms of peracute disease include fever, apathy and anorexia, and time from infection to death may only be 6 h. Severe lung lesions result from presence of one or two of the ApxI-III toxins. Control is through good husbandry practice, vaccines and antibiotic use. Culture and presence of the species-specific apxIV gene by PCR confirms diagnosis, and identification of serovar, of which 19 are known, informs on appropriate vaccine use and epidemiology.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/prevenção & controle , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Pleuropneumonia/veterinária , Suínos , Doenças dos Suínos/microbiologia
5.
PLoS Negl Trop Dis ; 15(9): e0009782, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34516554

RESUMO

BACKGROUND: Soil-transmitted helminths (STHs) are parasitic nematodes that inhabit the human intestine. They affect more than 1.5 billion people worldwide, causing physical and cognitive impairment in children. The global strategy to control STH infection includes periodic mass drug administration (MDA) based on the results of diagnostic testing among populations at risk, but the current microscopy method for detecting infection has diminished sensitivity as the intensity of infection decreases. Thus, improved diagnostic tools are needed to support decision-making for STH control programs. METHODOLOGY: We developed a nucleic acid amplification test based on recombinase polymerase amplification (RPA) technology to detect STH in stool. We designed primers and probes for each of the four STH species, optimized the assay, and then verified its performance using clinical stool samples. PRINCIPAL FINDINGS: Each RPA assay was as sensitive as a real-time polymerase chain reaction (PCR) assay in detecting copies of cloned target DNA sequences. The RPA assay amplified the target in DNA extracted from human stool samples that were positive for STH based on the Kato-Katz method, with no cross-reactivity of the non-target genomic DNA. When tested with clinical stool samples from patients with infections of light, moderate, and heavy intensity, the RPA assays demonstrated performance comparable to that of real-time PCR, with better results than Kato-Katz. This new rapid, sensitive and field-deployable method for detecting STH infections can help STH control programs achieve their goals. CONCLUSIONS: Semi-quantitation of target by RPA assay is possible and is comparable to real-time PCR. With proper instrumentation, RPA assays can provide robust, semi-quantification of STH DNA targets as an alternative field-deployable indicator to counts of helminth eggs for assessing infection intensity.


Assuntos
Fezes/parasitologia , Helmintíase/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/normas , Recombinases/metabolismo , Solo/parasitologia , DNA de Helmintos/genética , Helmintíase/parasitologia , Helmintíase/transmissão , Humanos , Recombinases/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Front Vet Sci ; 8: 728660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447805

RESUMO

Actinobacillus pleuropneumoniae (APP), the causative agent of porcine pleuropneumonia, is highly contagious and responsible for high morbidity, mortality, and economic losses in the swine industry worldwide, but quick serotyping and diagnosis are still not widely available. In this study, we sought to validate the use of Whatman FTA® cards for collection and processing of A. pleuropneumoniae isolates, or porcine lung tissue samples, for direct use in diagnostic multiplex PCRs. We have optimized the processing of 3-mm discs punched from FTA® cards loaded with cultured A. pleuropneumoniae, or imprinted on lesioned regions of lung tissue, with only three distilled water washes before addition into our APP-multiplex PCR (mPCR) assay for rapid, low-cost identification and serotyping. DNA captured on FTA® cards generated the same diagnostic PCR results as DNA extracted using commercial kits for 85 A. pleuropneumoniae clinical isolate cultures and 22 lung samples. Additionally, bacterial DNA bound to FTA® cards was detectable by PCR after 6 months of storage at 37°C. This study provides simple, efficient, rapid, and practical sample processing for detection and molecular serotyping of A. pleuropneumoniae.

7.
Anim Health Res Rev ; 22(2): 120-135, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34275511

RESUMO

Historically, the MISTEACHING (microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) framework to describe the outcome of host-pathogen interaction, has been applied to human pathogens. Here, we show, using Actinobacillus pleuropneumoniae as an exemplar, that the MISTEACHING framework can be applied to a strict veterinary pathogen, enabling the identification of major research gaps, the formulation of hypotheses whose study will lead to a greater understanding of pathogenic mechanisms, and/or improved prevention/therapeutic measures. We also suggest that the MISTEACHING framework should be extended with the inclusion of a 'strain' category, to become MISTEACHINGS. We conclude that the MISTEACHINGS framework can be applied to veterinary pathogens, whether they be bacteria, fungi, viruses, or parasites, and hope to stimulate others to use it to identify research gaps and to formulate hypotheses worthy of study with their own pathogens.


Assuntos
Actinobacillus pleuropneumoniae , Microbiota , Doenças dos Suínos , Animais , Suscetibilidade a Doenças/veterinária , Interações Hospedeiro-Patógeno , Suínos , Doenças dos Suínos/microbiologia
8.
Vet Microbiol ; 255: 109021, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667982

RESUMO

Two serologically and molecularly non-typeable isolates of the porcine lung pathogen Actinobacillus pleuropneumoniae have been identified from diseased swine in two different continents. Genome sequencing was carried out to identify their diagnostically relevant genotypes. Both isolates are biovar 1 and encode genes for production of ApxIV and ApxII (apxIICA structural genes, and apxIBD export genes). They both possess the same novel type II capsule locus (most similar to serovar 1, but with two capsule genes not previously found in A. pleuropneumoniae) but differ in their O-Ag loci. Strain 7213384-1 from Denmark, which we propose as the reference strain for serovar 19, has a serogroup 3/6/8/15 O-Ag locus; the Canadian isolate A08-013 has a serogroup 4/7 O-Ag locus. We have expanded the second of our two previously described A. pleuropneumoniae mPCRs to include capsule gene-specific primers for definitive detection of serovars 13-14 and 16-19.


Assuntos
Actinobacillus pleuropneumoniae/classificação , Cápsulas Bacterianas/classificação , Reação em Cadeia da Polimerase Multiplex/métodos , Sorotipagem/métodos , Actinobacillus pleuropneumoniae/genética , Cápsulas Bacterianas/química , DNA Bacteriano/genética , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...