Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19105-19116, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957092

RESUMO

[FeFe]-hydrogenase is nature's most efficient proton reducing and H2-oxidizing enzyme. However, biotechnological applications are hampered by the O2 sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe2(adt)(CO)6-x(CN)x]x- and [Fe2(pdt)(CO)6-x(CN)x]x- (x = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy. Additionally, we describe a straightforward synthetic recipe for the active site precursor complex Fe2(adt)(CO)6. Our data indicate that the aminodithiolate (adt) complex, which is the synthetic precursor of the natural active site cofactor, is most oxygen sensitive. This observation highlights the significance of proton transfer in aerobic deactivation, and supported by DFT calculations facilitates an identification of the responsible reactive oxygen species (ROS). Moreover, we show that the ligand environment of the iron ions critically influences the reactivity with O2 and ROS like superoxide and H2O2 as the oxygen sensitivity increases with the exchange of ligands from CO to CN-. The trends in aerobic deactivation observed for the model complexes are in line with the respective enzyme variants. Based on experimental and computational data, a model for the initial reaction of [FeFe]-hydrogenase with O2 is developed. Our study underscores the relevance of model systems in understanding biocatalysis and validates their potential as important tools for elucidating the chemistry of oxygen-induced deactivation of [FeFe]-hydrogenase.


Assuntos
Domínio Catalítico , Hidrogenase , Proteínas Ferro-Enxofre , Oxigênio , Hidrogenase/química , Hidrogenase/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Teoria da Densidade Funcional
2.
Chem Sci ; 15(13): 4960-4968, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550681

RESUMO

The conversion of CO2 by enzymes such as carbonic anhydrase or carboxylases plays a crucial role in many biological processes. However, in situ methods following the microscopic details of CO2 conversion at the active site are limited. Here, we used infrared spectroscopy to study the interaction of CO2, water, bicarbonate, and other reactants with ß-carbonic anhydrase from Escherichia coli (EcCA) and crotonyl-CoA carboxylase/reductase from Kitasatospora setae (KsCcr), two of the fastest CO2-converting enzymes in nature. Our data reveal that KsCcr possesses a so far unknown metal-independent CA-like activity. Site-directed mutagenesis of conserved active site residues combined with molecular dynamics simulations tracing CO2 distributions in the active site of KsCCr identify an 'activated' water molecule forming the hydroxyl anion that attacks CO2 and yields bicarbonate (HCO3-). Computer simulations also explain why substrate binding inhibits the anhydrase activity. Altogether, we demonstrate how in situ infrared spectroscopy combined with molecular dynamics simulations provides a simple yet powerful new approach to investigate the atomistic reaction mechanisms of different enzymes with CO2.

3.
Biochim Biophys Acta Bioenerg ; 1864(4): 149000, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516233

RESUMO

Cytochrome c oxidase (CcO) is a transmembrane heme­copper metalloenzyme that catalyzes the reduction of O2 to H2O at the reducing end of the respiratory electron transport chain. To understand this reaction, we followed the conversion of CcO from Rhodobacter sphaeroides between several active-ready and carbon monoxide-inhibited states via attenuated total reflection Fourier-transform infrared (ATR FTIR) difference spectroscopy. Utilizing a novel gas titration setup, we prepared the mixed-valence, CO-inhibited R2CO state as well as the fully-reduced R4 and R4CO states and induced the "active ready" oxidized state OH. These experiments are performed in the dark yielding FTIR difference spectra exclusively triggered by exposure to O2, the natural substrate of CcO. Our data demonstrate that the presence of CO at heme a3 does not impair the catalytic oxidation of CcO when the cycle starts from the fully-reduced states. Interestingly, when starting from the R2CO state, the release of the CO ligand upon purging with inert gas yield a product that is indistinguishable from photolysis-induced states. The observed changes at heme a3 in the catalytic binuclear center (BNC) result from the loss of CO and are unrelated to electronic excitation upon illumination. Based on our experiments, we re-evaluate the assignment of marker bands that appear in time-resolved photolysis and perfusion-induced experiments on CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Oxirredução
4.
J Biol Inorg Chem ; 28(4): 355-378, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36856864

RESUMO

[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.


Assuntos
Estrutura Terciária de Proteína , Modelos Moleculares , Oxirredução , Oxigênio/química
5.
Nature ; 615(7952): 541-547, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890228

RESUMO

Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.


Assuntos
Atmosfera , Hidrogênio , Hidrogenase , Mycobacterium smegmatis , Microscopia Crioeletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Oxirredução , Oxigênio , Vitamina K 2/metabolismo , Atmosfera/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Hidrogenação
6.
Angew Chem Int Ed Engl ; 62(7): e202216903, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464641

RESUMO

Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN- ) ligands. Extrinsic CO and CN- , however, inhibit hydrogenases. The mechanism by which CN- binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN- -treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Šallowed us to distinguish intrinsic CN- and CO ligands and to show that extrinsic CN- binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN- treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Prótons , Hidrogênio/química , Hidrogenase/metabolismo , Cianetos/metabolismo , Catálise , Proteínas Ferro-Enxofre/química
7.
J Biol Chem ; 298(9): 102291, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868564

RESUMO

[NiFe]-hydrogenases (Hyds) comprise a small and a large subunit. The latter harbors the biologically unique [NiFe](CN)2CO active-site cofactor. The maturation process includes the assembly of the [Fe](CN)2CO cofactor precursor, nickel binding, endoproteolytic cleavage of the large subunit, and dimerization with the small subunit to yield active enzyme. The biosynthesis of the [Fe](CN)2CO moiety of [NiFe]-Hyd-1 and Hyd-2 occurs on the scaffold complex HybG-HypD (GD), whereas the HypC-HypD complex is specific for the assembly of Hyd-3. The metabolic source and the route for delivering iron to the active site remain unclear. To investigate the maturation process of O2-tolerant Hyd-1 from Escherichia coli, we developed an enzymatic in vitro reconstitution system that allows for the synthesis of Hyd-1 using only purified components. Together with this in vitro reconstitution system, we employed biochemical analyses, infrared spectroscopy (attenuated total reflection FTIR), mass spectrometry (MS), and microscale thermophoresis to monitor the iron transfer during the maturation process and to understand how the [Fe](CN)2CO cofactor precursor is ultimately incorporated into the large subunit. We demonstrate the direct transfer of iron from 57Fe-labeled GD complex to the large subunit of Hyd-1. Our data reveal that the GD complex exclusively interacts with the large subunit of Hyd-1 and Hyd-2 but not with the large subunit of Hyd-3. Furthermore, we show that the presence of iron in the active site is a prerequisite for nickel insertion. Taken together, these findings reveal how the [Fe](CN)2CO cofactor precursor is transferred and incorporated into the active site of [NiFe]-Hyd.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Ferro , Chaperonas Moleculares , Oxirredutases , Transporte Biológico , Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo
8.
Chem Rev ; 122(14): 11900-11973, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35849738

RESUMO

Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.


Assuntos
Hidrogenase , Aldeído Oxirredutases , Dióxido de Carbono/química , Formiato Desidrogenases/metabolismo , Hidrogenase/química , Complexos Multienzimáticos , Nitrogenase/metabolismo , Oxirredução
9.
Inorg Chem ; 61(26): 10036-10042, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35729755

RESUMO

The H-cluster is the catalytic cofactor of [FeFe]-hydrogenase, a metalloenzyme that catalyzes the formation of dihydrogen (H2). The catalytic diiron site of the H-cluster carries two cyanide and three carbon monoxide ligands, making it an excellent target for IR spectroscopy. In previous work, we identified an oxidized and protonated H-cluster species, whose IR signature differs from that of the oxidized resting state (Hox) by a small but distinct shift to higher frequencies. This "blue shift" was explained by a protonation at the [4Fe-4S] subcomplex of the H-cluster. The novel species, denoted HoxH, was preferentially accumulated at low pH and in the presence of the exogenous reductant sodium dithionite (NaDT). When HoxH was reacted with H2, the hydride state (Hhyd) was formed, a key intermediate of [FeFe]-hydrogenase turnover. A recent publication revisited our protocol for the accumulation of HoxH in wild-type [FeFe]-hydrogenase, concluding that inhibition by NaDT decay products rather than cofactor protonation causes the spectroscopic "blue shift". Here, we demonstrate that HoxH formation does not require the presence of NaDT (or its decay products), but accumulates also with the milder reductants tris(2-carboxyethyl)phosphine, dithiothreitol, or ascorbic acid, in particular at low pH. Our data consistently suggest that HoxH is accumulated when deprotonation of the H-cluster is impaired, thereby preventing the regain of the oxidized resting state Hox in the catalytic cycle.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Monóxido de Carbono/química , Domínio Catalítico , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxirredução
10.
Biochem J ; 478(17): 3281-3295, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34409988

RESUMO

The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN- and CO ligands are transferred and attached to the iron ion. We report an efficient expression and purification system producing the HypCD complex from E. coli with complete metal content. This enabled in-depth spectroscopic characterizations. The results obtained by EPR and Mössbauer spectroscopy demonstrate that the [Fe](CN)2CO cofactor and the [4Fe-4S] cluster of the HypCD complex are redox active. The data indicate a potential-dependent interconversion of the [Fe]2+/3+ and [4Fe-4S]2+/+ couple, respectively. Moreover, ATR FTIR spectroscopy reveals potential-dependent disulfide formation, which hints at an electron confurcation step between the metal centers. MicroScale thermophoresis indicates preferable binding between the HypCD complex and its in vivo interaction partner HypE under reducing conditions. Together, these results provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions required for the assembly of the CN- and CO ligands on the scaffold complex HypCD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas/metabolismo , Enxofre/metabolismo , Monóxido de Carbono/metabolismo , Domínio Catalítico , Dissulfetos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Escherichia coli/genética , Íons/metabolismo , Ligantes , Oxirredução , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Mossbauer/métodos
11.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049880

RESUMO

Besides its role in biological nitrogen fixation, vanadium-containing nitrogenase also reduces carbon monoxide (CO) to hydrocarbons, in analogy to the industrial Fischer-Tropsch process. The protein yields 93% of ethylene (C2H4), implying a C-C coupling step that mandates the simultaneous binding of two CO at the active site FeV cofactor. Spectroscopic data indicated multiple CO binding events, but structural analyses of Mo and V nitrogenase only confirmed a single site. Here, we report the structure of a two CO-bound state of V nitrogenase at 1.05 Å resolution, with one µ-bridging and one terminal CO molecule. This additional, specific ligand binding site suggests a mechanistic route for CO reduction and hydrocarbon formation, as well as a second access pathway for protons required during the reaction. Moreover, carbonyls are strong-field ligands that are chemically similar to mechanistically relevant hydrides that may be formed and used in a fully analogous fashion.

12.
Front Chem ; 9: 669452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987170

RESUMO

Cytochrome c oxidase (CcO) is a transmembrane protein complex that reduces molecular oxygen to water while translocating protons across the mitochondrial membrane. Changes in the redox states of its cofactors trigger both O2 reduction and vectorial proton transfer, which includes a proton-loading site, yet unidentified. In this work, we exploited carbon monoxide (CO) as a vibrational Stark effect (VSE) probe at the binuclear center of CcO from Rhodobacter sphaeroides. The CO stretching frequency was monitored as a function of the electrical potential, using Fourier transform infrared (FTIR) absorption spectroelectrochemistry. We observed three different redox states (R4CO, R2CO, and O), determined their midpoint potential, and compared the resulting electric field to electrostatic calculations. A change in the local electric field strength of +2.9 MV/cm was derived, which was induced by the redox transition from R4CO to R2CO. We performed potential jump experiments to accumulate the R2CO and R4CO species and studied the FTIR difference spectra in the protein fingerprint region. The comparison of the experimental and computational results reveals that the key glutamic acid residue E286 is protonated in the observed states, and that its hydrogen-bonding environment is disturbed upon the redox transition of heme a3. Our experiments also suggest propionate A of heme a3 changing its protonation state in concert with the redox state of a second cofactor, heme a. This supports the role of propionic acid side chains as part of the proton-loading site.

13.
Angew Chem Int Ed Engl ; 60(18): 10001-10006, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33630389

RESUMO

Gas-processing metalloenzymes are of interest to future bio- and bioinspired technologies. Of particular importance are hydrogenases and nitrogenases, which both produce molecular hydrogen (H2 ) from proton (H+ ) reduction. Herein, we report on the use of rotating ring-disk electrochemistry (RRDE) and mass spectrometry (MS) to follow the production of H2 and isotopes produced from deuteron (D+ ) reduction (HD and D2 ) using the [FeFe]-hydrogenase from Clostridium pasteurianum, a model hydrogen-evolving metalloenzyme. This facilitates enzymology studies independent of non-innocent chemical reductants. We anticipate that these approaches will be of value in resolving the catalytic mechanisms of H2 -producing metalloenzymes and the design of bioinspired catalysts for H2 production and N2 fixation.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Clostridium/enzimologia , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Espectrometria de Massas
14.
Dalton Trans ; 50(10): 3641-3650, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33629081

RESUMO

Hydrogenases are bidirectional redox enzymes that catalyze hydrogen turnover in archaea, bacteria, and algae. While all types of hydrogenase show H2 oxidation activity, [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands. The active site niche is connected with the solvent by two distinct proton transfer pathways. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ operando infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the complex interdependence of hydrogen turnover and bulk pH.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Chlamydomonas reinhardtii/enzimologia , Elétrons , Concentração de Íons de Hidrogênio , Hidrogenase/análise , Proteínas Ferro-Enxofre/análise , Oxirredução , Prótons
15.
Acc Chem Res ; 54(1): 232-241, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33326230

RESUMO

Hydrogenases are metalloenzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are model systems for bioinorganic chemistry, including low-valent transition metals, hydride chemistry, and proton-coupled electron transfer. In this Account, we describe how photochemistry and infrared difference spectroscopy can be used to identify the dynamic hydrogen-bonding changes that facilitate proton transfer in [NiFe]- and [FeFe]-hydrogenase.[NiFe]-hydrogenase binds a heterobimetallic nickel/iron site embedded in the protein by four cysteine ligands. [FeFe]-hydrogenase carries a homobimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands in the active site facilitate detailed investigations of hydrogenase catalysis by infrared spectroscopy because of their strong signals and redox-dependent frequency shifts. We found that specific redox-state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive "light-minus-dark" infrared difference spectra monitoring key amino acid residues. As these transitions are coupled to protonation changes, our data allowed investigation of dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography.In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the Ni-C state was followed by infrared difference spectroscopy. Our data clearly indicate the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving a glutamic acid residue and a "dangling water" molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the Hred state. Infrared difference spectra indicate hydrogen-bonding changes involving two glutamic acid residues and a conserved arginine residue. While crystallographic analyses of [FeFe]-hydrogenase in the oxidized state failed to explain the rapid proton transfer because of a breach in the succession of residues, our findings facilitated a precise molecular model of discontinued proton transfer.Comparing both systems, our data emphasize the role of the outer coordination sphere in bimetallic hydrogenases: we suggest that protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase causes the notable preference toward H2 oxidation. On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group, promoting both H2 oxidation and proton reduction. These observations may guide the design of organometallic compounds that mimic the catalytic properties of hydrogenases.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Monóxido de Carbono/química , Domínio Catalítico , Hidrogênio/química , Ligação de Hidrogênio , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Luz , Oxirredução , Prótons
16.
Nat Rev Chem ; 5(3): 146-147, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37117531
17.
Inorg Chem ; 59(22): 16474-16488, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33147959

RESUMO

[FeFe]-hydrogenases are nature's blueprint for efficient hydrogen turnover. Understanding their enzymatic mechanism may improve technological H2 fuel generation. The active-site cofactor (H-cluster) consists of a [4Fe-4S] cluster ([4Fe]H), cysteine-linked to a diiron site ([2Fe]H) carrying an azadithiolate (adt) group, terminal cyanide and carbon monoxide ligands, and a bridging carbon monoxide (µCO) in the oxidized protein (Hox). Recently, the debate on the structure of reduced H-cluster states was intensified by the assignment of new species under cryogenic conditions. We investigated temperature effects (4-280 K) in infrared (IR) and X-ray absorption spectroscopy (XAS) data of [FeFe]-hydrogenases using fit analyses and quantum-chemical calculations. IR data from our laboratory and literature sources were evaluated. At ambient temperatures, reduced H-cluster states with a bridging hydride (µH-, in Hred and Hsred) or with an additional proton at [4Fe]H (Hred') or at the distal iron of [2Fe]H (Hhyd) prevail. At cryogenic temperatures, these species are largely replaced by states that hold a µCO, lack [4Fe]H protonation, and bind an additional proton at the adt nitrogen (HredH+ and HsredH+). XAS revealed the atomic coordinate dispersion (i.e., the Debye-Waller parameter, 2σ2) of the iron-ligand bonds and Fe-Fe distances in the oxidized and reduced H-cluster. 2σ2 showed a temperature dependence typical for the so-called protein-glass transition, with small changes below ∼200 K and a pronounced increase above this "breakpoint". This behavior is attributed to the freezing-out of larger-scale anharmonic motions of amino acid side chains and water species. We propose that protonation at [4Fe]H as well as ligand rearrangement and µH- binding at [2Fe]H are impaired because of restricted molecular mobility at cryogenic temperatures so that protonation can be biased toward adt. We conclude that a H-cluster with a µCO, selective [4Fe]H or [2Fe]H protonation, and catalytic proton transfer via adt facilitates efficient H2 conversion in [FeFe]-hydrogenase.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Temperatura , Biocatálise , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Teoria da Densidade Funcional , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares
18.
J Biol Inorg Chem ; 25(5): 777-788, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661785

RESUMO

[FeFe]-hydrogenase enzymes employ a unique organometallic cofactor for efficient and reversible hydrogen conversion. This so-called H-cluster consists of a [4Fe-4S] cubane cysteine linked to a diiron complex coordinated by carbon monoxide and cyanide ligands and an azadithiolate ligand (adt = NH(CH2S)2)·[FeFe]-hydrogenase apo-protein binding only the [4Fe-4S] sub-complex can be fully activated in vitro by the addition of a synthetic diiron site precursor complex ([2Fe]adt). Elucidation of the mechanism of cofactor assembly will aid in the design of improved hydrogen processing synthetic catalysts. We combined electron paramagnetic resonance, Fourier-transform infrared, and X-ray absorption spectroscopy to characterize intermediates of H-cluster assembly as initiated by mixing of the apo-protein (HydA1) from the green alga Chlamydomonas reinhardtii with [2Fe]adt. The three methods consistently show rapid formation of a complete H-cluster in the oxidized, CO-inhibited state (Hox-CO) already within seconds after the mixing. Moreover, FTIR spectroscopy support a model in which Hox-CO formation is preceded by a short-lived Hred'-CO-like intermediate. Accumulation of Hox-CO was followed by CO release resulting in the slower conversion to the catalytically active state (Hox) as well as formation of reduced states of the H-cluster.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
19.
Chem Sci ; 11(47): 12789-12801, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094474

RESUMO

[FeFe]-hydrogenases are known for their high rates of hydrogen turnover, and are intensively studied in the context of biotechnological applications. Evolution has generated a plethora of different subclasses with widely different characteristics. The M2e subclass is phylogenetically distinct from previously characterized members of this enzyme family and its biological role is unknown. It features significant differences in domain- and active site architecture, and is most closely related to the putative sensory [FeFe]-hydrogenases. Here we report the first comprehensive biochemical and spectroscopical characterization of an M2e enzyme, derived from Thermoanaerobacter mathranii. As compared to other [FeFe]-hydrogenases characterized to-date, this enzyme displays an increased H2 affinity, higher activation enthalpies for H+/H2 interconversion, and unusual reactivity towards known hydrogenase inhibitors. These properties are related to differences in active site architecture between the M2e [FeFe]-hydrogenase and "prototypical" [FeFe]-hydrogenases. Thus, this study provides new insight into the role of this subclass in hydrogen metabolism and the influence of the active site pocket on the chemistry of the H-cluster.

20.
Chem Sci ; 11(18): 4608-4617, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-34122916

RESUMO

Hydrogenases are among the fastest H2 evolving catalysts known to date and have been extensively studied under in vitro conditions. Here, we report the first mechanistic investigation of an [FeFe]-hydrogenase under whole-cell conditions. Functional [FeFe]-hydrogenase from the green alga Chlamydomonas reinhardtii is generated in genetically modified Escherichia coli cells by addition of a synthetic cofactor to the growth medium. The assembly and reactivity of the resulting semi-synthetic enzyme was monitored using whole-cell electron paramagnetic resonance and Fourier-transform Infrared difference spectroscopy as well as scattering scanning near-field optical microscopy. Through a combination of gas treatments, pH titrations, and isotope editing we were able to corroborate the formation of a number of proposed catalytic intermediates in living cells, supporting their physiological relevance. Moreover, a previously incompletely characterized catalytic intermediate is reported herein, attributed to the formation of a protonated metal hydride species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA