Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 14(1): 5060, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604826

RESUMO

pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.


Assuntos
Filtração , Imageamento por Ressonância Magnética , Animais , Ratos , Perfusão , Taxa de Filtração Glomerular , Concentração de Íons de Hidrogênio
2.
Anal Bioanal Chem ; 415(18): 4615-4627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37389599

RESUMO

The potential of fungi for use as biotechnological factories in the production of a range of valuable metabolites, such as enzymes, terpenes, and volatile aroma compounds, is high. Unlike other microorganisms, fungi mostly secrete secondary metabolites into the culture medium, allowing for easy extraction and analysis. To date, the most commonly used technique in the analysis of volatile organic compounds (VOCs) is gas chromatography, which is time and labour consuming. We propose an alternative ambient screening method that provides rapid chemical information for characterising the VOCs of filamentous fungi in liquid culture using a commercially available ambient dielectric barrier discharge ionisation (DBDI) source connected to a quadrupole-Orbitrap mass spectrometer. The effects of method parameters on measured peak intensities of a series of 8 selected aroma standards were optimised with the best conditions being selected for sample analysis. The developed method was then deployed to the screening of VOCs from samples of 13 fungal strains in three different types of complex growth media showing clear differences in VOC profiles across the different media, enabling determination of best culturing conditions for each compound-strain combination. Our findings underline the applicability of ambient DBDI for the direct detection and comparison of aroma compounds produced by filamentous fungi in liquid culture.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Meios de Cultura/análise , Fungos
3.
Metabolites ; 13(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36984817

RESUMO

With increased use of mass spectrometry imaging (MSI) in support of pharmaceutical research and development, there are opportunities to develop analytical pipelines that incorporate exploratory high-performance analysis with higher capacity and faster targeted MSI. Therefore, to enable faster MSI data acquisition we present analyte-targeted desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) utilizing a triple-quadrupole (TQ) mass analyzer. The evaluated platform configuration provided superior sensitivity compared to a conventional time-of-flight (TOF) mass analyzer and thus holds the potential to generate data applicable to pharmaceutical research and development. The platform was successfully operated with sampling rates up to 10 scans/s, comparing positively to the 1 scan/s commonly used on comparable DESI-TOF setups. The higher scan rate enabled investigation of the desorption/ionization processes of endogenous lipid species such as phosphatidylcholines and a co-administered cassette of four orally dosed drugs-erlotininb, moxifloxacin, olanzapine, and terfenadine. This was used to enable understanding of the impact of the desorption/ionization processes in order to optimize the operational parameters, resulting in improved compound coverage for olanzapine and the main olanzapine metabolite, hydroxy-olanzapine, in brain tissue sections compared to DESI-TOF analysis or matrix-assisted laser desorption/ionization (MALDI) platforms. The approach allowed reducing the amount of recorded information, thus reducing the size of datasets from up to 150 GB per experiment down to several hundred MB. The improved performance was demonstrated in case studies investigating the suitability of this approach for mapping drug distribution, spatially resolved profiling of drug-induced nephrotoxicity, and molecular-histological tissue classification of ovarian tumors specimens.

4.
Nat Commun ; 13(1): 7690, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509758

RESUMO

The brain is a major sanctuary site for metastatic cancer cells that evade systemic therapies. Through pre-clinical pharmacological, biological, and molecular studies, we characterize the functional link between drug resistance and central nervous system (CNS) relapse in Epidermal Growth Factor Receptor- (EGFR-) mutant non-small cell lung cancer, which can progress in the brain when treated with the CNS-penetrant EGFR inhibitor osimertinib. Despite widespread osimertinib distribution in vivo, the brain microvascular tumor microenvironment (TME) is associated with the persistence of malignant cell sub-populations, which are poised to proliferate in the brain as osimertinib-resistant lesions over time. Cellular and molecular features of this poised state are regulated through a Ras homolog family member A (RhoA) and Serum Responsive Factor (SRF) gene expression program. RhoA potentiates the outgrowth of disseminated tumor cells on osimertinib treatment, preferentially in response to extracellular laminin and in the brain. Thus, we identify pre-existing and adaptive features of metastatic and drug-resistant cancer cells, which are enhanced by RhoA/SRF signaling and the brain TME during the evolution of osimertinib-resistant disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína rhoA de Ligação ao GTP/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores ErbB/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Encéfalo/patologia , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Microambiente Tumoral
5.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355479

RESUMO

Fixation of samples is broadly used prior to the histological evaluation of tissue samples. Though recent reports demonstrated the ability to use fixed tissues for mass spectrometry imaging (MSI) based proteomics, glycomics and tumor classification studies, to date comprehensive evaluation of fixation-related effects for spatially resolved metabolomics and drug disposition studies is still missing. In this study we used matrix assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) MSI to investigate the effect of formalin-fixation and formalin-fixation combined with paraffin embedding on the detectable metabolome including xenobiotics. Formalin fixation was found to cause significant washout of polar molecular species, including inorganic salts, amino acids, organic acids and carnitine species, oxidation of endogenous lipids and formation of reaction products between lipids and fixative ingredients. The slow fixation kinetics under ambient conditions resulted in increased lipid hydrolysis in the tissue core, correlating with the time-dependent progression of the fixation. Paraffin embedding resulted in subsequent partial removal of structural lipids resulting in the distortion of the elucidated biodistributions.

6.
Angew Chem Int Ed Engl ; 61(36): e202202075, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35830332

RESUMO

Here, we demonstrate detection by mass spectrometry of an intact protein-drug complex directly from liver tissue from rats that had been orally dosed with the drug. The protein-drug complex comprised fatty acid binding protein 1, FABP1, non-covalently bound to the small molecule therapeutic bezafibrate. Moreover, we demonstrate spatial mapping of the [FABP1+bezafibrate] complex across a thin section of liver by targeted mass spectrometry imaging. This work is the first demonstration of in situ mass spectrometry analysis of a non-covalent protein-drug complex formed in vivo and has implications for early stage drug discovery by providing a route to target-drug characterization directly from the physiological environment.


Assuntos
Bezafibrato , Fígado , Animais , Bezafibrato/análise , Bezafibrato/metabolismo , Diagnóstico por Imagem , Descoberta de Drogas , Fígado/metabolismo , Espectrometria de Massas , Ratos
8.
Metabolites ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35323705

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a standard tool used for absolute quantification of drugs in pharmacokinetic (PK) studies. However, all spatial information is lost during the extraction and elucidation of a drugs biodistribution within the tissue is impossible. In the study presented here we used a sample embedding protocol optimized for mass spectrometry imaging (MSI) to prepare up to 15 rat intestine specimens at once. Desorption electrospray ionization (DESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) were employed to determine the distributions and relative abundances of four benchmarking compounds in the intestinal segments. High resolution MALDI-MSI experiments performed at 10 µm spatial resolution allowed to determine the drug distribution in the different intestinal histological compartments to determine the absorbed and tissue bound fractions of the drugs. The low tissue bound drug fractions, which were determined to account for 56-66% of the total drug, highlight the importance to understand the spatial distribution of drugs within the histological compartments of a given tissue to rationalize concentration differences found in PK studies. The mean drug abundances of four benchmark compounds determined by MSI were correlated with the absolute drug concentrations. Linear regression resulted in coefficients of determination (R2) ranging from 0.532 to 0.926 for MALDI-MSI and R2 values ranging from 0.585 to 0.945 for DESI-MSI, validating a quantitative relation of the imaging data. The good correlation of the absolute tissue concentrations of the benchmark compounds and the MSI data provides a bases for relative quantification of compounds within and between tissues, without normalization to an isotopically labelled standard, provided that the compared tissues have inherently similar ion suppression effects.

9.
J Am Soc Mass Spectrom ; 33(4): 649-659, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262356

RESUMO

Microbes exert influence across the microbiome-gut-brain axis through neurotransmitter production, induction of host immunomodulators, or the release or induction of other microbial or host molecules. Here, we used mass spectrometry imaging (MSI), a label-free imaging tool, to map molecular changes in the gut and brain in germ-free, antibiotic-treated and control mice. We determined spatial distribution and relative quantification of neurotransmitters and their precursors in response to the microbiome. Using untargeted MSI, we detected a significant change in the levels of four identified small molecules in the brains of germ-free animals compared to controls. However, antibiotic treatment induced no significant changes in these same metabolites in the brain after 1 week of treatment. This work exemplifies the utility of MSI as a tool for the study of known and discovery of novel, mediators of microbiome-gut-brain axis communication.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Encéfalo/metabolismo , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal/fisiologia , Espectrometria de Massas/métodos , Camundongos
10.
Theranostics ; 12(5): 2162-2174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265205

RESUMO

Gaining insight into the heterogeneity of nanoparticle drug distribution within tumors would improve both design and clinical translation of nanomedicines. There is little data showing the spatio-temporal behavior of nanomedicines in tissues as current methods are not able to provide a comprehensive view of the nanomedicine distribution, released drug or its effects in the context of a complex tissue microenvironment. Methods: A new experimental approach which integrates the molecular imaging and bioanalytical technologies MSI and IMC was developed to determine the biodistribution of total drug and drug metabolite delivered via PLA-PEG nanoparticles and to overlay this with imaging of the nanomedicine in the context of detailed tumor microenvironment markers. This was used to assess the nanomedicine AZD2811 in animals bearing three different pre-clinical PDX tumors. Results: This new approach delivered new insights into the nanoparticle/drug biodistribution. Mass spectrometry imaging was able to differentiate the tumor distribution of co-dosed deuterated non-nanoparticle-formulated free drug alongside the nanoparticle-formulated drug by directly visualizing both delivery approaches within the same animal or tissue. While the IV delivered free drug was uniformly distributed, the nanomedicine delivered drug was heterogeneous. By staining for multiple biomarkers of the tumor microenvironment on the same tumor sections using imaging mass cytometry, co-registering and integrating data from both imaging modalities it was possible to determine the features in regions with highest nanomedicine distribution. Nanomedicine delivered drug was associated with regions higher in macrophages, as well as more stromal regions of the tumor. Such a comparison of complementary molecular data allows delineation of drug abundance in individual cell types and in stroma. Conclusions: This multi-modal imaging solution offers researchers a better understanding of drug and nanocarrier distribution in complex tissues and enables data-driven drug carrier design.


Assuntos
Nanopartículas , Neoplasias , Animais , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Imagem Molecular , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Distribuição Tecidual , Microambiente Tumoral
11.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35005896

RESUMO

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos , Imagem Multimodal , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gencitabina
12.
Angew Chem Weinheim Bergstr Ger ; 134(36): e202202075, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38505542

RESUMO

Here, we demonstrate detection by mass spectrometry of an intact protein-drug complex directly from liver tissue from rats that had been orally dosed with the drug. The protein-drug complex comprised fatty acid binding protein 1, FABP1, non-covalently bound to the small molecule therapeutic bezafibrate. Moreover, we demonstrate spatial mapping of the [FABP1+bezafibrate] complex across a thin section of liver by targeted mass spectrometry imaging. This work is the first demonstration of in situ mass spectrometry analysis of a non-covalent protein-drug complex formed in vivo and has implications for early stage drug discovery by providing a route to target-drug characterization directly from the physiological environment.

13.
J Am Soc Mass Spectrom ; 32(12): 2791-2802, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767352

RESUMO

A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.


Assuntos
Espectrometria de Massas/métodos , Imagem Molecular/métodos , Infecções por Salmonella/diagnóstico por imagem , Infecções por Salmonella/microbiologia , Salmonella typhimurium/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
14.
Nat Protoc ; 16(7): 3298-3321, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075230

RESUMO

Molecule-specific techniques such as MALDI and desorption electrospray ionization mass spectrometry imaging enable direct and simultaneous mapping of biomolecules in tissue sections in a single experiment. However, neurotransmitter imaging in the complex environment of biological samples remains challenging. Our covalent charge-tagging approach using on-tissue chemical derivatization of primary and secondary amines and phenolic hydroxyls enables comprehensive mapping of neurotransmitter networks. Here, we present robust and easy-to-use chemical derivatization protocols that facilitate quantitative and simultaneous molecular imaging of complete neurotransmitter systems and drugs in diverse biological tissue sections with high lateral resolution. This is currently not possible with any other imaging technique. The protocol, using fluoromethylpyridinium and pyrylium reagents, describes all steps from tissue preparation (~1 h), chemical derivatization (1-2 h), data collection (timing depends on the number of samples and lateral resolution) and data analysis and interpretation. The specificity of the chemical reaction can also help users identify unknown chemical identities. Our protocol can reveal the cellular locations in which signaling molecules act and thus shed light on the complex responses that occur after the administration of drugs or during the course of a disease.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurotransmissores/metabolismo , Imagem Óptica , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Limite de Detecção , Masculino , Ratos Sprague-Dawley , Padrões de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Anal Chem ; 93(6): 3061-3071, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33534548

RESUMO

An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.


Assuntos
Aprendizado Profundo , Animais , Técnicas Histológicas , Camundongos , Imagem Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fluxo de Trabalho
16.
Anal Chem ; 93(8): 3742-3749, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606520

RESUMO

Imaging mass cytometry (IMC) offers the opportunity to image metal- and heavy halogen-containing xenobiotics in a highly multiplexed experiment with other immunochemistry-based reagents to distinguish uptake into different tissue structures or cell types. However, in practice, many xenobiotics are not amenable to this analysis, as any compound which is not bound to the tissue matrix will delocalize during aqueous sample-processing steps required for IMC analysis. Here, we present a strategy to perform IMC experiments on a water-soluble polysarcosine-modified dendrimer drug-delivery system (S-Dends). This strategy involves two consecutive imaging acquisitions on the same tissue section using the same instrumental platform, an initial laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MSI) experiment followed by tissue staining and a standard IMC experiment. We demonstrated that settings can be found for the initial ablation step that leave sufficient residual tissue for subsequent antibody staining and visualization. This workflow results in lateral resolution for the S-Dends of 2 µm followed by imaging of metal-tagged antibodies at 1 µm.


Assuntos
Citometria por Imagem , Água , Sistemas de Liberação de Medicamentos , Espectrometria de Massas , Coloração e Rotulagem
17.
Anal Chem ; 93(5): 2767-2775, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33474935

RESUMO

Clinical tissue specimens are often unscreened, and preparation of tissue sections for analysis by mass spectrometry imaging (MSI) can cause aerosolization of particles potentially carrying an infectious load. We here present a decontamination approach based on ultraviolet-C (UV-C) light to inactivate clinically relevant pathogens such as herpesviridae, papovaviridae human immunodeficiency virus, or SARS-CoV-2, which may be present in human tissue samples while preserving the biodistributions of analytes within the tissue. High doses of UV-C required for high-level disinfection were found to cause oxidation and photodegradation of endogenous species. Lower UV-C doses maintaining inactivation of clinically relevant pathogens to a level of increased operator safety were found to be less destructive to the tissue metabolome and xenobiotics. These doses caused less alterations of the tissue metabolome and allowed elucidation of the biodistribution of the endogenous metabolites. Additionally, we were able to determine the spatially integrated abundances of the ATR inhibitor ceralasertib from decontaminated human biopsies using desorption electrospray ionization-MSI (DESI-MSI).


Assuntos
Descontaminação/métodos , Raios Ultravioleta , Animais , Azetidinas/análise , Azetidinas/uso terapêutico , COVID-19/patologia , COVID-19/virologia , Neoplasias de Cabeça e Pescoço/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Metaboloma , Naftalenos/análise , Naftalenos/uso terapêutico , Fotólise/efeitos da radiação , Ratos , Ratos Wistar , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray/métodos , Terfenadina/química , Inativação de Vírus/efeitos da radiação
18.
Clin Cancer Res ; 27(1): 189-201, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028591

RESUMO

PURPOSE: Osimertinib is a potent and selective EGFR tyrosine kinase inhibitor (EGFR-TKI) of both sensitizing and T790M resistance mutations. To treat metastatic brain disease, blood-brain barrier (BBB) permeability is considered desirable for increasing clinical efficacy. EXPERIMENTAL DESIGN: We examined the level of brain penetration for 16 irreversible and reversible EGFR-TKIs using multiple in vitro and in vivo BBB preclinical models. RESULTS: In vitro osimertinib was the weakest substrate for human BBB efflux transporters (efflux ratio 3.2). In vivo rat free brain to free plasma ratios (Kpuu) show osimertinib has the most BBB penetrance (0.21), compared with the other TKIs (Kpuu ≤ 0.12). PET imaging in Cynomolgus macaques demonstrated osimertinib was the only TKI among those tested to achieve significant brain penetrance (C max %ID 1.5, brain/blood Kp 2.6). Desorption electrospray ionization mass spectroscopy images of brains from mouse PC9 macrometastases models showed osimertinib readily distributes across both healthy brain and tumor tissue. Comparison of osimertinib with the poorly BBB penetrant afatinib in a mouse PC9 model of subclinical brain metastases showed only osimertinib has a significant effect on rate of brain tumor growth. CONCLUSIONS: These preclinical studies indicate that osimertinib can achieve significant exposure in the brain compared with the other EGFR-TKIs tested and supports the ongoing clinical evaluation of osimertinib for the treatment of EGFR-mutant brain metastasis. This work also demonstrates the link between low in vitro transporter efflux ratios and increased brain penetrance in vivo supporting the use of in vitro transporter assays as an early screen in drug discovery.


Assuntos
Acrilamidas/farmacocinética , Compostos de Anilina/farmacocinética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Neoplasias Encefálicas/secundário , Cães , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/patologia , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos , Permeabilidade , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Am Soc Mass Spectrom ; 31(12): 2553-2557, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32633532

RESUMO

Mass spectrometry imaging using matrix-assisted laser desorption/ionization and desorption electrospray ionization has recently been employed to investigate the distribution of neurotransmitters, including biogenic amines and amino acids, directly in brain tissue sections. Ionization is facilitated by charge-tagging through pyrylium derivatization of primary amine containing neurotransmitters directly in tissue sections, significantly improving the limit of detection. Since the derivatization adds carbon and hydrogen to the target compounds, the resulting isotopic patterns of the products are not distinctive from those of the nonderivatized species. Here, we describe an approach for chemically modifying the reactive pyrylium ion to introduce the distinct isotopic signature of bromine in mass spectra of chemically derivatized substances in tissue sections. The method enables monoamine compounds to be distinguished directly in tissue sections, facilitating their identification.


Assuntos
Química Encefálica , Neurotransmissores/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aminas/análise , Animais , Bromo/química , Compostos Heterocíclicos com 3 Anéis/química , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
20.
Anal Chem ; 92(16): 11080-11088, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32519547

RESUMO

A new tissue sample embedding and processing method is presented that provides downstream compatibility with numerous different histological, molecular biology, and analytical techniques. The methodology is based on the low temperature embedding of fresh frozen specimens into a hydrogel matrix composed of hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) and sectioning using a cryomicrotome. The hydrogel was expected not to interfere with standard tissue characterization methods, histologically or analytically. We assessed the compatibility of this protocol with various mass spectrometric imaging methods including matrix-assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). We also demonstrated the suitability of the universal protocol for extraction based molecular biology techniques such as rt-PCR. The integration of multiple analytical modalities through this universal sample preparation protocol offers the ability to study tissues at a systems biology level and directly linking results to tissue morphology and cellular phenotype.


Assuntos
Hidrogéis/química , Derivados da Hipromelose/química , Povidona/química , Manejo de Espécimes/métodos , Inclusão do Tecido/métodos , Animais , Masculino , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...