Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617207

RESUMO

The primary cilium is a hair-like organelle that hosts molecular machinery for various developmental and homeostatic signaling pathways. Its alteration can cause severe ciliopathies such as the Bardet-Biedl and Joubert syndromes, but is also linked to Alzheimer's disease, clinical depression, and autism spectrum disorder. These afflictions are caused by disturbances in a variety of genes but a common phenotype amongst them is cognitive impairment. Cilia-mediated neural function has generally been examined in relation to these diseases or other developmental defects, but the role of cilia in brain function and memory consolidation is unknown. To elucidate the role of cilia in neural activity and cognitive function, we temporally ablated primary cilia in adult mice before performing electroencephalogram/electromyogram (EEG/EMG) recordings. We found that cilia deficient mice had altered sleep architecture, reduced EEG power, and attenuated phase-amplitude coupling, a process that underlies memory consolidation. These results highlight the growing significance of cilia, demonstrating that they are not only necessary in early neurodevelopment, but also regulate advanced neural functions in the adult brain.

2.
Plant Cell ; 32(11): 3452-3468, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917737

RESUMO

Over 80,000 angiosperm species produce flowers with petals fused into a corolla tube. The corolla tube contributes to the tremendous diversity of flower morphology and plays a critical role in plant reproduction, yet it remains one of the least understood plant structures from a developmental genetics perspective. Through mutant analyses and transgenic experiments, we show that the tasiRNA-ARF pathway is required for corolla tube formation in the monkeyflower species Mimulus lewisii Loss-of-function mutations in the M. lewisii orthologs of ARGONAUTE7 and SUPPRESSOR OF GENE SILENCING3 cause a dramatic decrease in abundance of TAS3-derived small RNAs and a moderate upregulation of AUXIN RESPONSE FACTOR3 (ARF3) and ARF4, which lead to inhibition of lateral expansion of the bases of petal primordia and complete arrest of the upward growth of the interprimordial regions, resulting in unfused corollas. Using the DR5 auxin-responsive promoter, we discovered that auxin signaling is continuous along the petal primordium base and the interprimordial region during the critical stage of corolla tube formation in the wild type, similar to the spatial pattern of MlARF4 expression. Auxin response is much weaker and more restricted in the mutant. Furthermore, exogenous application of a polar auxin transport inhibitor to wild-type floral apices disrupted petal fusion. Together, these results suggest a new conceptual model highlighting the central role of auxin-directed synchronized growth of the petal primordium base and the interprimordial region in corolla tube formation.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Mimulus/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Flores/anatomia & histologia , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Redes e Vias Metabólicas/genética , Mimulus/efeitos dos fármacos , Mimulus/crescimento & desenvolvimento , Mutação , Fenótipo , Ftalimidas/farmacologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA Interferente Pequeno
3.
Mol Neurobiol ; 57(7): 3042-3056, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32458389

RESUMO

Acids can disturb the ecosystem of wild animals through altering their olfaction and olfaction-related survival behaviors. It is known that the main olfactory epithelia (MOE) of mammals rely on odorant receptors and type III adenylyl cyclase (AC3) to detect general odorants. However, it is unknown how the olfactory system sense protons or acidic odorants. Here, we show that while the MOE of AC3 knockout (KO) mice failed to respond to an odor mix in electro-olfactogram (EOG) recordings, it retained a small fraction of acid-evoked EOG responses. The acetic acid-induced EOG responses in wild-type (WT) MOE can be dissected into two components: the big component dependent on the AC3-mediated cAMP pathway and the much smaller component not. The small acid-evoked EOG response of the AC3 KOs was blocked by diminazene, an inhibitor of acid-sensing ion channels (ASICs), but not by forskolin/IBMX that desensitize the cAMP pathway. AC3 KO mice lost their sensitivity to detect pungent odorants but maintained sniffing behavior to acetic acid. Immunofluorescence staining demonstrated that ASIC1 proteins were highly expressed in olfactory sensory neurons (OSNs), mostly enriched in the knobs, dendrites, and somata, but not in olfactory cilia. Real-time polymerase chain reaction further detected the mRNA expression of ASIC1a, ASIC2b, and ASIC3 in the MOE. Additionally, mice exhibited reduced preference to attractive objects when placed in an environment with acidic volatiles. Together, we conclude that the mouse olfactory system has a non-conventional, likely ASIC-mediated ionotropic mechanism for acid sensing.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Adenilil Ciclases/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Adenilil Ciclases/genética , Animais , AMP Cíclico/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Olfato/fisiologia
4.
Mol Brain ; 13(1): 28, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122360

RESUMO

Primary cilia are centriole-derived sensory organelles that are present in most mammalian cells, including astrocytes and neurons. Evidence is emerging that astrocyte and neuronal primary cilia demonstrate a dichotomy in the mature mouse brain. However, it is unknown how astrocytic and neuronal primary cilia change their morphology and ciliary proteins when exposed to reactive insults including epilepsy and traumatic brain injury. We used a double transgenic mouse strain (Arl13b-mCherry; Centrin2-GFP), in which we found spontaneous seizures, and a cortical injury model to examine the morphological changes of astrocytic and neuronal primary cilia under reactive conditions. Transgenic overexpression of Arl13b drastically increases the length of astrocytic and neuronal primary cilia in the hippocampus, as well as the cilia lengths of cultured astrocytes and neurons. Spontaneous seizures shorten Arl13b-positive astrocytic cilia and AC3-positive neuronal cilia in the hippocampus. In a cortical injury model, Arl13b is not detectable in primary cilia, but Arl13b protein relocates to the cell body and has robust expression in the proximity of injured tissues. In contrast, the number of AC3-positive cilia near injured tissues remains unchanged, but their lengths become shorter. These results on astrocytic cilia implicate Arl13b in regulating astrocyte proliferation and tissue regeneration, while the shortening of AC3-positive cilia suggests adaptive changes of neuronal primary cilia under excitotoxicity.


Assuntos
Astrócitos/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Centrossomo/metabolismo , Giro Denteado/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Convulsões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...