Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
NPJ Digit Med ; 7(1): 90, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605089

RESUMO

Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-based methods can make the creation of fast and accurate whole-heart digital twins feasible. We use Latent Neural Ordinary Differential Equations (LNODEs) to learn the pressure-volume dynamics of a heart failure patient. Our surrogate model is trained from 400 simulations while accounting for 43 parameters describing cell-to-organ cardiac electromechanics and cardiovascular hemodynamics. LNODEs provide a compact representation of the 3D-0D model in a latent space by means of an Artificial Neural Network that retains only 3 hidden layers with 13 neurons per layer and allows for numerical simulations of cardiac function on a single processor. We employ LNODEs to perform global sensitivity analysis and parameter estimation with uncertainty quantification in 3 hours of computations, still on a single processor.

3.
medRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106072

RESUMO

Large-cohort studies using cardiovascular imaging and diagnostic datasets have assessed cardiac anatomy, function, and outcomes, but typically do not reveal underlying biological mechanisms. Cardiac digital twins (CDTs) provide personalized physics- and physiology-constrained in-silico representations, enabling inference of multi-scale properties tied to these mechanisms. We constructed 3464 anatomically-accurate CDTs using cardiac magnetic resonance images from UK biobank and personalised their myocardial conduction velocities (CVs) from electrocardiograms (ECG), through an automated framework. We found well-known sex-specific differences in QRS duration were fully explained by myocardial anatomy, as CV remained consistent across sexes. Conversely, significant associations of CV with ageing and increased BMI suggest myocardial tissue remodelling. Novel associations were observed with left ventricular ejection fraction and mental-health phenotypes, through a phenome-wide association study, and CV was also linked with adverse clinical outcomes. Our study highlights the utility of population-based CDTs in assessing intersubject variability and uncovering strong links with mental health.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37870689

RESUMO

Conduction system pacing (CSP) has the potential to achieve physiological-paced activation by pacing the ventricular conduction system. Before CSP is adopted in standard clinical practice, large, randomised, and multi-centre trials are required to investigate CSP safety and efficacy compared to standard biventricular pacing (BVP). Furthermore, there are unanswered questions about pacing thresholds required to achieve optimal pacing delivery while preventing device battery draining, and about which patient groups are more likely to benefit from CSP rather than BVP. In silico studies have been increasingly used to investigate mechanisms underlying changes in cardiac function in response to pathologies and treatment. In the context of CSP, they have been used to improve our understanding of conduction system capture to optimise CSP delivery and battery life, and noninvasively compare different pacing methods on different patient groups. In this review, we discuss the in silico studies published to date investigating different aspects of CSP delivery.

5.
Front Cardiovasc Med ; 10: 1211560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608808

RESUMO

Arrhythmia is an extremely common finding in patients receiving cardiac resynchronisation therapy (CRT). Despite this, in the majority of randomised trials testing CRT efficacy, patients with a recent history of arrhythmia were excluded. Most of our knowledge into the management of arrhythmia in CRT is therefore based on arrhythmia trials in the heart failure (HF) population, rather than from trials dedicated to the CRT population. However, unique to CRT patients is the aim to reach as close to 100% biventricular pacing (BVP) as possible, with HF outcomes greatly influenced by relatively small changes in pacing percentage. Thus, in comparison to the average HF patient, there is an even greater incentive for controlling arrhythmia, to achieve minimal interference with the effective delivery of BVP. In this review, we examine both atrial and ventricular arrhythmias, addressing their impact on CRT, and discuss the available evidence regarding optimal arrhythmia management in this patient group. We review pharmacological and procedural-based approaches, and lastly explore novel ways of harnessing device data to guide treatment of arrhythmia in CRT.

6.
Heart Rhythm ; 20(12): 1629-1636, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37516414

RESUMO

BACKGROUND: Biventricular endocardial pacing (BiV-endo) and left bundle branch area pacing (LBBAP) are novel methods of delivering cardiac resynchronization therapy. These techniques are associated with improved activation times and acute hemodynamic response compared with conventional biventricular epicardial pacing (BiV-epi); however, the effects on repolarization and arrhythmic risk are unknown. OBJECTIVE: The purpose of this study was to compare the effects of temporary BiV-epi, BiV-endo, and LBBAP on epicardial left ventricular (LV) repolarization using electrocardiographic imaging (ECGi). METHODS: Eleven patients indicated for cardiac resynchronization therapy underwent a temporary pacing protocol with ECGi. BiV-endo was delivered via endocardial stimulation of the LV lateral wall. LBBAP was delivered by pacing the LV septum. Epicardial LV repolarization time (LVRT-95; time taken for 95% of the LV to repolarize), LV RT dispersion, mean LV activation recovery interval (ARI), LV ARI dispersion, and RT gradients were calculated. RESULTS: The protocol was completed in 10 patients. During LBBAP, there were significant reductions in LVRT-95 (94.9 ± 17.4 ms vs 125.0 ± 29.4 ms; P = .03) and LV RT dispersion (29.4 ± 6.3 ms vs 40.8 ± 11.4 ms; P = .015) compared with BiV-epi. In contrast, there were no significant differences between baseline, BiV-epi, or BiV-endo. There was a nonsignificant reduction in mean RT gradients between LBBAP and baseline rhythm (0.74 ± 0.22 ms/mm vs 1.01 ± 0.31 ms/mm; P = .07). There were no significant differences in mean LV ARI or LV ARI dispersion between groups. CONCLUSION: Temporary LBBAP reduces epicardial dispersion of repolarization compared with conventional BiV-epi. Further study is required to determine whether these repolarization changes on ECGi translate into a reduced risk of ventricular arrhythmia in clinical practice.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Septo Interventricular , Humanos , Terapia de Ressincronização Cardíaca/métodos , Sistema de Condução Cardíaco , Arritmias Cardíacas/terapia , Ventrículos do Coração , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Resultado do Tratamento , Função Ventricular Esquerda/fisiologia
7.
Comput Biol Med ; 162: 107009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301099

RESUMO

This work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico por imagem , Reprodutibilidade dos Testes , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Imageamento por Ressonância Magnética/métodos , Fibrose , Valor Preditivo dos Testes
8.
Front Cardiovasc Med ; 10: 1187754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304966

RESUMO

Conduction system pacing (CSP) has emerged as a promising novel delivery method for Cardiac Resynchronisation Therapy (CRT), providing an alternative to conventional biventricular epicardial (BiV) pacing in indicated patients. Despite increasing popularity and widespread uptake, CSP has rarely been specifically examined in patients with atrial fibrillation (AF), a cohort which forms a significant proportion of the heart failure (HF) population. In this review, we first examine the mechanistic evidence for the importance of sinus rhythm (SR) in CSP by allowing adjustment of atrioventricular delays (AVD) to achieve the optimal electrical response, and thus, whether the efficacy of CSP may be significantly attenuated compared to conventional BiV pacing in the presence of AF. We next evaluate the largest clinical body of evidence in this field, related to patients receiving CSP following atrioventricular nodal ablation (AVNA) for AF. Finally, we discuss how future research may be designed to address the vital question of how effective CSP in AF patients is, and the potential hurdles we may face in delivering such studies.

9.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363928

RESUMO

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Assuntos
Ventrículos do Coração , Coração , Humanos , Coração/fisiologia , Átrios do Coração , Modelos Cardiovasculares
10.
Prog Biomed Eng (Bristol) ; 5(3): 032004, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37360227

RESUMO

Computational models of the heart are now being used to assess the effectiveness and feasibility of interventions through in-silico clinical trials (ISCTs). As the adoption and acceptance of ISCTs increases, best practices for reporting the methodology and analysing the results will emerge. Focusing in the area of cardiology, we aim to evaluate the types of ISCTs, their analysis methods and their reporting standards. To this end, we conducted a systematic review of cardiac ISCTs over the period of 1 January 2012-1 January 2022, following the preferred reporting items for systematic reviews and meta-analysis (PRISMA). We considered cardiac ISCTs of human patient cohorts, and excluded studies of single individuals and those in which models were used to guide a procedure without comparing against a control group. We identified 36 publications that described cardiac ISCTs, with most of the studies coming from the US and the UK. In 75% of the studies, a validation step was performed, although the specific type of validation varied between the studies. ANSYS FLUENT was the most commonly used software in 19% of ISCTs. The specific software used was not reported in 14% of the studies. Unlike clinical trials, we found a lack of consistent reporting of patient demographics, with 28% of the studies not reporting them. Uncertainty quantification was limited, with sensitivity analysis performed in only 19% of the studies. In 97% of the ISCTs, no link was provided to provide easy access to the data or models used in the study. There was no consistent naming of study types with a wide range of studies that could potentially be considered ISCTs. There is a clear need for community agreement on minimal reporting standards on patient demographics, accepted standards for ISCT cohort quality control, uncertainty quantification, and increased model and data sharing.

11.
Comput Biol Med ; 156: 106696, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870172

RESUMO

Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.


Assuntos
Bloqueio de Ramo , Cálcio , Animais , Cães , Cálcio/metabolismo , Coração/fisiologia , Arritmias Cardíacas , Ventrículos do Coração
12.
Front Physiol ; 14: 1054095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776979

RESUMO

Non-responders to Cardiac Resynchronization Therapy (CRT) represent a high-risk, and difficult to treat population of heart failure patients. Studies have shown that these patients have a lower quality of life and reduced life expectancy compared to those who respond to CRT. Whilst the first-line treatment for dyssynchronous heart failure is "conventional" biventricular epicardial CRT, a range of novel pacing interventions have emerged as potential alternatives. This has raised the question whether these new treatments may be useful as a second-line pacing intervention for treating non-responders, or indeed, whether some patients may benefit from these as a first-line option. In this review, we will examine the current evidence for four pacing interventions in the context of treatment of conventional CRT non-responders: CRT optimization; multisite left ventricular pacing; left ventricular endocardial pacing and conduction system pacing.

13.
J Cardiovasc Electrophysiol ; 34(4): 984-993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738149

RESUMO

INTRODUCTION: Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as a valuable cardiac resynchronization therapy (CRT) delivery method. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical synchrony during CRT, HBP, LBBP, HBP with left ventricular (LV) epicardial lead (His-optimized CRT [HOT-CRT]), and LBBP with LV epicardial lead (LBBP-optimized CRT [LOT-CRT]) in patients with different conduction disease presentations using computational modeling. METHODS: We simulated ventricular activation on 24 four-chamber heart geometries, including His-Purkinje systems with proximal left bundle branch block (LBBB). We simulated septal scar, LV lateral wall scar, and mild and severe myocardium and LV His-Purkinje system conduction disease by decreasing the conduction velocity (CV) down to 70% and 35% of the healthy CV. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (90% of biventricular activation time [BIVAT-90]). RESULTS: Severe LV His-Purkinje conduction disease favored CRT (BIVAT-90: HBP 101.5 ± 7.8 ms vs. CRT 93.0 ± 8.9 ms, p < .05), with additional electrical synchrony induced by HOT-CRT (87.6 ± 6.7 ms, p < .05) and LOT-CRT (73.9 ± 7.6 ms, p < .05). Patients with slow myocardium CV benefit more from CSP compared to CRT (BIVAT-90: CRT 134.5 ± 24.1 ms; HBP 97.1 ± 9.9 ms, p < .01; LBBP: 101.5 ± 10.7 ms, p < .01). Septal but not lateral wall scar made CSP ineffective, while CRT was able to resynchronize the ventricles in the presence of septal scar (BIVAT-90: baseline 119.1 ± 10.8 ms vs. CRT 85.1 ± 14.9 ms, p < .01). CONCLUSION: Severe LV His-Purkinje conduction disease attenuates the benefits of CSP, with additional improvements achieved with HOT-CRT and LOT-CRT. Septal but not lateral wall scars make CSP ineffective.


Assuntos
Fascículo Atrioventricular , Cicatriz , Humanos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Miocárdio
14.
Ann Biomed Eng ; 51(1): 241-252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271218

RESUMO

Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we used a Statistical Shape Model and to represent function, we ran electrophysiological simulations. We study the use of 14 biomarkers to calibrate the model, training one Gaussian Process Emulator (GPE) per biomarker. To fit the models, we followed a Bayesian History Matching (BHM) strategy, wherein each iteration a region of the parameter space is ruled out if the emulation with that set of parameter values produces is "implausible". We found that without running any extra simulations we can find 87.41% of the non-implausible parameter combinations. Moreover, we showed how reducing the uncertainty of the measurements from 10 to 5% can reduce the final parameter space by 6 orders of magnitude. This innovation allows for a model fitting technique, therefore reducing the computational load of future biomedical studies.


Assuntos
Coração , Modelos Estatísticos , Humanos , Teorema de Bayes , Calibragem , Incerteza
15.
Heart Rhythm ; 20(2): 207-216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575808

RESUMO

BACKGROUND: Biventricular endocardial pacing (BiV-endo) has demonstrated superior cardiac resynchronization compared to conventional biventricular epicardial pacing (BiV-epi). Left bundle branch area pacing (LBBAP) may also achieve effective cardiac resynchronization therapy (CRT). OBJECTIVE: The purpose of this study was to compare the acute electrical and hemodynamic effects of BiV-epi, BiV-endo, and LBBAP delivered from the LV endocardium and to assess how myocardial scar affects response. METHODS: Eleven patients with heart failure and indications for CRT underwent a temporary pacing study with electrocardiographic imaging (ECGi) and hemodynamic assessment. BiV-endo was delivered by stimulation of the left ventricular (LV) lateral wall, and LBBAP was delivered by stimulation of the LV septum, at the site of a Purkinje potential. LV activation time (LVAT-95), LV dyssynchrony index (LVDI), biventricular activation time (BIVAT-90), and biventricular dyssynchrony index (BIVDI) were calculated. Myocardial scar was assessed using magnetic resonance imaging (MRI). RESULTS: The protocol was completed in 10 patients. Compared to BiV-epi (LVAT-95: 79.2 ± 13.1 ms; LVDI: 26.6 ± 3.4 ms) LV resynchronization was superior during BiV-endo (LVAT-95: 48.5 ± 14.9 ms; P = .001; LVDI: 16.6 ± 6.4 ms; P = .002) and LBBAP (LVAT-95: 48.9 ± 12.5 ms; P = .001; LVDI: 15.3 ± 3.4 ms; P = .001). Biventricular resynchronization was similarly superior during BiV-endo and LBBAP vs BiV-epi (BIVAT-90 and BIVDI; P <.05). The rate of acute hemodynamic responders was higher during BiV-endo (90%) and LBBAP (70%) vs BiV-epi (50%). The benefits of LBBAP (but not BiV-endo) on LV resynchronization were attenuated when septal scar was present in a subset of 8 patients who underwent MRI. CONCLUSION: Our findings suggest superior electrical resynchronization and a higher proportion of acute hemodynamic responders during BiV-endo and LBBAP compared to BiV-epi. Electrical resynchronization was similar between BiV-endo and LBBAP; however, septal scar seemed to attenuate response to LBBAP.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Terapia de Ressincronização Cardíaca/métodos , Endocárdio , Cicatriz/terapia , Bloqueio de Ramo/diagnóstico , Bloqueio de Ramo/terapia , Imageamento por Ressonância Magnética , Hemodinâmica/fisiologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Resultado do Tratamento
16.
Front Phys ; 11: 1306210, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38500690

RESUMO

Cardiac mechanics models are developed to represent a high level of detail, including refined anatomies, accurate cell mechanics models, and platforms to link microscale physiology to whole-organ function. However, cardiac biomechanics models still have limited clinical translation. In this review, we provide a picture of cardiac mechanics models, focusing on their clinical translation. We review the main experimental and clinical data used in cardiac models, as well as the steps followed in the literature to generate anatomical meshes ready for simulations. We describe the main models in active and passive mechanics and the different lumped parameter models to represent the circulatory system. Lastly, we provide a summary of the state-of-the-art in terms of ventricular, atrial, and four-chamber cardiac biomechanics models. We discuss the steps that may facilitate clinical translation of the biomechanics models we describe. A well-established software to simulate cardiac biomechanics is lacking, with all available platforms involving different levels of documentation, learning curves, accessibility, and cost. Furthermore, there is no regulatory framework that clearly outlines the verification and validation requirements a model has to satisfy in order to be reliably used in applications. Finally, better integration with increasingly rich clinical and/or experimental datasets as well as machine learning techniques to reduce computational costs might increase model reliability at feasible resources. Cardiac biomechanics models provide excellent opportunities to be integrated into clinical workflows, but more refinement and careful validation against clinical data are needed to improve their credibility. In addition, in each context of use, model complexity must be balanced with the associated high computational cost of running these models.

17.
Front Physiol ; 13: 1011566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213223

RESUMO

A significant number of right bundle branch block (RBBB) patients receive cardiac resynchronization therapy (CRT), despite lack of evidence for benefit in this patient group. His bundle (HBP) and left bundle pacing (LBP) are novel CRT delivery methods, but their effect on RBBB remains understudied. We aim to compare pacing-induced electrical synchrony during conventional CRT, HBP, and LBP in RBBB patients with different conduction disturbances, and to investigate whether alternative ways of delivering LBP improve response to pacing. We simulated ventricular activation on twenty-four four-chamber heart geometries each including a His-Purkinje system with proximal right bundle branch block (RBBB). We simulated RBBB combined with left anterior and posterior fascicular blocks (LAFB and LPFB). Additionally, RBBB was simulated in the presence of slow conduction velocity (CV) in the myocardium, left ventricular (LV) or right ventricular (RV) His-Purkinje system, and whole His-Purkinje system. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (BIVAT-90). Compared to baseline, HBP significantly improved activation times for RBBB alone (BIVAT-90: 66.9 ± 5.5 ms vs. 42.6 ± 3.8 ms, p < 0.01), with LAFB (69.5 ± 5.0 ms vs. 58.1 ± 6.2 ms, p < 0.01), with LPFB (81.8 ± 6.6 ms vs. 62.9 ± 6.2 ms, p < 0.01), with slow myocardial CV (119.4 ± 11.4 ms vs. 97.2 ± 10.0 ms, p < 0.01) or slow CV in the whole His-Purkinje system (102.3 ± 7.0 ms vs. 75.5 ± 5.2 ms, p < 0.01). LBP was only effective in RBBB cases if combined with anodal capture of the RV septum myocardium (BIVAT-90: 66.9 ± 5.5 ms vs. 48.2 ± 5.2 ms, p < 0.01). CRT significantly reduced activation times in RBBB in the presence of severely slow RV His-Purkinje CV (95.1 ± 7.9 ms vs. 84.3 ± 9.3 ms, p < 0.01) and LPFB (81.8 ± 6.6 ms vs. CRT: 72.9 ± 8.6 ms, p < 0.01). Both CRT and HBP were ineffective with severely slow CV in the LV His-Purkinje system. HBP is effective in RBBB patients with otherwise healthy myocardium and Purkinje system, while CRT and LBP are ineffective. Response to LBP improves when LBP is combined with RV septum anodal capture. CRT is better than HBP only in patients with severely slow CV in the RV His-Purkinje system, while CV slowing of the whole His-Purkinje system and the myocardium favor HBP over CRT.

18.
Front Physiol ; 13: 907190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213235

RESUMO

Computer models capable of representing the intrinsic personal electrophysiology (EP) of the heart in silico are termed virtual heart technologies. When anatomy and EP are tailored to individual patients within the model, such technologies are promising clinical and industrial tools. Regardless of their vast potential, few virtual technologies simulating the entire organ-scale EP of all four-chambers of the heart have been reported and widespread clinical use is limited due to high computational costs and difficulty in validation. We thus report on the development of a novel virtual technology representing the electrophysiology of all four-chambers of the heart aiming to overcome these limitations. In our previous work, a model of ventricular EP embedded in a torso was constructed from clinical magnetic resonance image (MRI) data and personalized according to the measured 12 lead electrocardiogram (ECG) of a single subject under normal sinus rhythm. This model is then expanded upon to include whole heart EP and a detailed representation of the His-Purkinje system (HPS). To test the capacities of the personalized virtual heart technology to replicate standard clinical morphological ECG features under such conditions, bundle branch blocks within both the right and the left ventricles under two different conduction velocity settings are modeled alongside sinus rhythm. To ensure clinical viability, model generation was completely automated and simulations were performed using an efficient real-time cardiac EP simulator. Close correspondence between the measured and simulated 12 lead ECG was observed under normal sinus conditions and all simulated bundle branch blocks manifested relevant clinical morphological features.

19.
Front Physiol ; 13: 898866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733988

RESUMO

Leadless left bundle branch area pacing (LBBAP) represents the merger of two rapidly progressing areas in the field of cardiac resynchronisation therapy (CRT). It combines the attractive concepts of pacing the native conduction system to allow more physiological activation of the myocardium than conventional biventricular pacing, with the potential added benefits of avoiding long-term complications associated with transvenous leads via leadless left ventricular endocardial pacing. This perspective article will first review the evidence for the efficacy of leadless pacing in CRT. We then summarise the procedural steps and pilot data for leadless LBBAP, followed by a discussion of the safety and efficacy of this novel technique. Finally, we will examine how further mechanistic evidence may shed light to which patients may benefit most from leadless LBBAP, and how improvements in current experience and technology could promote widespread uptake and expand current clinical indications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...