Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37760834

RESUMO

Despite great efforts to develop new therapeutic strategies to combat melanoma, the prognosis remains rather poor. Artesunate (ART) is an antimalarial drug displaying anti-cancer effects in vitro and in vivo. In this in vitro study, we investigated the selectivity of ART on melanoma cells. Furthermore, we aimed to further elucidate the mechanism of the drug with a focus on the role of iron, the induction of oxidative stress and the implication of the enzyme heme oxygenase 1 (HO-1). ART treatment decreased the cell viability of A375 melanoma cells while it did not affect the viability of normal human dermal fibroblasts, used as a model for normal (healthy) cells. ART's toxicity was shown to be dependent on intracellular iron and the drug induced high levels of oxidative stress as well as upregulation of HO-1. Melanoma cells deficient in HO-1 or treated with a HO-1 inhibitor were less sensitive towards ART. Taken together, our study demonstrates that ART induces oxidative stress resulting in the upregulation of HO-1 in melanoma cells, which subsequently triggers the effect of ART's own toxicity. This new finding that HO-1 is involved in ART-mediated toxicity may open up new perspectives in cancer therapy.

2.
PLoS One ; 18(6): e0286756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37279200

RESUMO

Impairments of mitochondrial functions are linked to human ageing and pathologies such as cancer, cardiomyopathy, neurodegeneration and diabetes. Specifically, aberrations in ultrastructure of mitochondrial inner membrane (IM) and factors regulating them are linked to diabetes. The development of diabetes is connected to the 'Mitochondrial Contact Site and Cristae Organising System' (MICOS) complex which is a large membrane protein complex defining the IM architecture. MIC26 and MIC27 are homologous apolipoproteins of the MICOS complex. MIC26 has been reported as a 22 kDa mitochondrial and a 55 kDa glycosylated and secreted protein. The molecular and functional relationship between these MIC26 isoforms has not been investigated. In order to understand their molecular roles, we depleted MIC26 using siRNA and further generated MIC26 and MIC27 knockouts (KOs) in four different human cell lines. In these KOs, we used four anti-MIC26 antibodies and consistently detected the loss of mitochondrial MIC26 (22 kDa) and MIC27 (30 kDa) but not the loss of intracellular or secreted 55 kDa protein. Thus, the protein assigned earlier as 55 kDa MIC26 is nonspecific. We further excluded the presence of a glycosylated, high-molecular weight MIC27 protein. Next, we probed GFP- and myc-tagged variants of MIC26 with antibodies against GFP and myc respectively. Again, only the mitochondrial versions of these tagged proteins were detected but not the corresponding high-molecular weight MIC26, suggesting that MIC26 is indeed not post-translationally modified. Mutagenesis of predicted glycosylation sites in MIC26 also did not affect the detection of the 55 kDa protein band. Mass spectrometry of a band excised from an SDS gel around 55 kDa could not confirm the presence of any peptides derived from MIC26. Taken together, we conclude that both MIC26 and MIC27 are exclusively localized in mitochondria and that the observed phenotypes reported previously are exclusively due to their mitochondrial function.


Assuntos
Diabetes Mellitus , Proteínas de Membrana , Humanos , Glicosilação , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Apolipoproteínas/metabolismo , Diabetes Mellitus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA