Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 4: 930010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339517

RESUMO

Objective: Timing for sexual intercourse is important in achieving pregnancy in natural menstrual cycles. Different methods of detecting the fertile window have been invented, among them luteinization hormone (LH) to predict ovulation and biphasic body basal temperature (BBT) to confirm ovulation retrospectively. The gold standard to detect ovulation in gynecology practice remains transvaginal ultrasonography in combination with serum progesterone. In this study we evaluated a wearable temperature sensing patch (femSense®) using continuous body temperature measurement to confirm ovulation and determine the end of the fertile window. Methods: 96 participants received the femSense® system consisting of an adhesive axillary thermometer patch and a smartphone application, where patients were asked to document information about their previous 3 cycles. Based on the participants data, the app predicted the cycle length and the estimated day of ovulation. From these predictions, the most probable fertile window and the day for applying the patch were derived. Participants applied and activated the femSense® patch on the calculated date, from which the patch continuously recorded their body temperature throughout a period of up to 7 days to confirm ovulation. Patients documented their daily urinary LH test positivity, and a transvaginal ultrasound was performed on day cycle day 7, 10, 12 and 14/15 to investigate the growth of one dominant follicle. If a follicle reached 15 mm in diameter, an ultrasound examination was carried out every day consecutively until ovulation. On the day ovulation was detected, serum progesterone was measured to confirm the results of the ultrasound. The performance of femSense® was evaluated by comparing the day of ovulation confirmation with the results of ovulation prediction (LH test) and detection (transvaginal ultrasound). Results: The femSense® system confirmed ovulation occurrence in 60 cases (81.1%) compared to 48 predicted cases (64.9%) with the LH test (p = 0.041). Subgroup analysis revealed a positive trend for the femSense® system of specific ovulation confirmation within the fertile window of 24 h after ovulation in 42 of 74 cases (56.8%). Cycle length, therapy method or infertility reason of the patient did not influence accuracy of the femSense® system. Conclusions: The femSense® system poses a promising alternative to the traditional BBT method and is a valuable surrogate marker to transvaginal ultrasound for confirmation of ovulation.

2.
Front Digit Health ; 3: 794274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970650

RESUMO

Since the human body reacts to a variety of different diseases with elevated body temperature, measurement of body temperature remains relevant in clinical practice. The absolute temperature value for fever definition is still arbitrary and depends on the measuring site, as well as underlying disease and individual factors. Hence, a simple threshold for fever definition is outdated and a definition which relies on the relative changes in the individual seems reasonable as it takes these individual factors into account. In this prospective multicentric study we validate an adhesive axillary thermometer (SteadyTemp®) which allows continuous non-invasive temperature measurements. It consists of a patch to measure temperature and a smartphone application to process and visualize gathered data. This article provides information of the new diagnostic possibilities when using this wearable device and where it could be beneficial. Furthermore, it discusses how to interpret the generated data and when it is not practical to use, based on its characteristics and physiological phenomena.

3.
Front Physiol ; 10: 1529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920725

RESUMO

Ex vivo generation of red blood cells (cRBCs) is an attractive tool in basic research and for replacing blood components donated by volunteers. As a prerequisite for the survival of cRBCs during storage as well as in the circulation, the quality of the membrane is of utmost importance. Besides the cytoskeleton and embedded proteins, the lipid bilayer is critical for membrane integrity. Although cRBCs suffer from increased fragility, studies investigating the lipid content of their membrane are still lacking. We investigated the membrane lipid profile of cRBCs from CD34+ human stem and progenitor cells compared to native red blood cells (nRBCs) and native reticulocytes (nRETs). Ex vivo erythropoiesis was performed in a well-established liquid assay. cRBCs showed a maturation grade between nRETs and nRBCs. High-resolution mass spectrometry analysis for cholesterol and the major phospholipid classes, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, sphingomyelin and lysophosphatidylcholin, demonstrated severe cholesterol deficiency in cRBCs. Although cRBCs showed normal deformability capacity, they suffered from increased hemolysis due to minimal changes in the osmotic conditions. After additional lipid supplementation, especially cholesterol during culturing, the cholesterol content of cRBCs increased to a subnormal amount. Concurrently, the osmotic resistance recovered completely and became comparable to that of nRETs. Minor differences in the amount of phospholipids in cRBCs compared to native cells could mainly be attributed to the ongoing membrane remodeling process from the reticulocyte to the erythrocyte stage. Obtained results demonstrate severe cholesterol deficiency as a reason for enhanced fragility of cRBCs. Therefore, the supplementation of lipids, especially cholesterol during ex vivo erythropoiesis may overcome this limitation and strengthens the survival of cRBCs ex vivo and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA