Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 14(5): e14742, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35437952

RESUMO

The regular overconsumption of energy-dense foods (rich in lipids and sugars) results in elevated intestinal nutrient absorption and consequently excessive accumulation of lipids in the liver, adipose tissue, skeletal muscles, and other organs. This can eventually lead to obesity and obesity-associated diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and certain types of cancer, as well as aggravate inflammatory bowel disease (IBD). Therefore, targeting the pathways that regulate intestinal nutrient absorption holds significant therapeutic potential. In this review, we discuss the molecular and cellular mechanisms controlling intestinal lipid handling, their relevance to the development of metabolic diseases, and emerging therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Lipídeos/uso terapêutico , Fígado/metabolismo , Obesidade/metabolismo
2.
Am J Physiol Endocrinol Metab ; 322(2): E85-E100, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927460

RESUMO

Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high-caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. UCP1 knockout and wild-type mice were housed at 30°C and fed a control diet for 4 wk followed by 8 wk of high-fat diet. Body weight and food intake were monitored continuously over the course of the study, and indirect calorimetry was used to determine energy expenditure during both feeding periods. Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake, and energy expenditure were not affected by loss of UCP1 function during both feeding periods. We introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages. Our results demonstrate that UCP1 does not protect against diet-induced obesity at thermoneutrality.NEW & NOTEWORTHY We provide evidence that the abundance of UCP1 does not influence energy metabolism at thermoneutrality studying a novel Cre-mediated UCP1-KO mouse model. This model will be a foundation for a better understanding of the contribution of UCP1 in different cell types or life stages to energy metabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Temperatura , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Calorimetria Indireta/métodos , Suscetibilidade a Doenças/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Aumento de Peso/genética
3.
EMBO Mol Med ; 13(5): e13548, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33949105

RESUMO

Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.


Assuntos
Quilomícrons , Metabolismo dos Lipídeos , Animais , Quilomícrons/metabolismo , Humanos , Intestinos , Camundongos , Obesidade , Proteína Quinase D2 , Proteínas Quinases , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...