Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 262: 110379, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250832

RESUMO

Leachate generation from open stockpiles of recycled woodchip materials is potentially harmful to aquatic ecosystems. There is growing interest in using numerical models to simulate leachate generation from outdoor piles, but this requires information about the hydraulic properties of the materials. The objectives of this study were to simulate leachate from woodchip piles with the numerical model HYDRUS-3D and to optimize subsets of parameters for single (SPM) and dual (DPM) pore flow models with the Bayesian Markov Chain Monte Carlo algorithm DREAMZS. Three experimental piles, each approximately 30 m3, were setup with mixtures of either once (coarse) or twice (fine) ground woodchips. Leachate continuously collected over a period of six months was similar across piles. As a result, subsets of optimized flow parameters for the coarse and fine woodchips were not different. Leachate predictions by the two pore flow models were similar and agreed reasonably with the field measurements, as indicated by Nash-Sutcliffe efficiency values greater than 0.6. This result suggests the simpler SPM is adequate for field predictions of leachate. However, leachate was consistently under-predicted by both pore models by 13-27% during rainfall events with more than 1 cm in 6 h. The optimized flow models can be used as a tool for studying pile management strategies.


Assuntos
Ecossistema , Eliminação de Resíduos , Teorema de Bayes , Reciclagem
2.
J Environ Manage ; 182: 421-428, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505167

RESUMO

Large-scale open storage of wood mulch is common practice at wood recycling facilities. During rain and snow melt, leachate with soluble compounds and suspended particles is released from mulch stockpiles. The objective of this study was to determine the quality of leachate/runoff from wood recycling facilities to evaluate its potential to contaminate receiving waterbodies. Wood mulch (n = 30) and leachate/runoff (n = 26) samples were collected over 1.5 years from three wood recycling facilities in New Jersey, USA. Differences by site were found (p < 0.05) for most of the 21 constituents tested in the solid wood mulch samples. Biochemical oxygen demand (range <20-3000 mg/L), chemical oxygen demand (134-6000 mg/L) and total suspended solids (69-401 mg/L) median concentrations of the leachate/runoff samples were comparable to those of untreated domestic wastewater. Total Kjeldahl N, total P and fecal coliform median values were slightly lower than typical wastewater values. Dose-response studies with leachate/runoff samples using zebrafish (Danio rerio) embryos showed that mortality and developmental defects typically did not occur even at the highest concentration tested, indicating low toxicity, although delayed development did occur. Based on this study, leachate/runoff from wood recycling facilities should not be released to surface waters as it is a potential source of organic contamination and low levels of nutrients. A study in which runoff from a controlled drainage area containing wood mulch of known properties is monitored would allow for better assessment of the potential impact of stormwater runoff from wood recycling facilities.


Assuntos
Reciclagem , Poluentes da Água/análise , Madeira/química , Animais , Análise da Demanda Biológica de Oxigênio , Embrião não Mamífero , Desenvolvimento Embrionário , Enterobacteriaceae/isolamento & purificação , Monitoramento Ambiental , New Jersey , Nitrogênio/análise , Nitrogênio/toxicidade , Fósforo/análise , Fósforo/toxicidade , Chuva , Poluentes da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento
3.
Water Environ Res ; 79(6): 600-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17605329

RESUMO

A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.


Assuntos
Reatores Biológicos , Simulação por Computador , Compostos Orgânicos/metabolismo , Oxigênio/metabolismo
4.
Water Environ Res ; 79(6): 613-24, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17605330

RESUMO

Based on the International Water Association's (London) Activated Sludge Model No. 2 (ASM2), biochemistry rate expressions for general heterotrophs and phosphorus-accumulating organisms (PAOs) were introduced to a previously developed, three-dimensional computational fluid dynamics (CFD) activated sludge model that characterized the mixing pattern within the outer channel of a full-scale, closed-loop bioreactor. Using acetate as the sole carbon and energy source, CFD simulations for general heterotrophs or PAOs individually agreed well with those of ASM2 for a chemostat with the same operating conditions. Competition between and selection of heterotrophs and PAOs was verified using conventional completely mixed and tanks-in-series models. Then, competition was studied in the CFD model. These results demonstrated that PAOs and heterotrophs can theoretically coexist in a single bioreactor when the oxygen input is appropriate to allow sufficient low-dissolved-oxygen zones to develop.


Assuntos
Reatores Biológicos , Simulação por Computador , Fósforo/metabolismo , Purificação da Água
5.
Water Environ Res ; 75(2): 138-50, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12772959

RESUMO

Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.


Assuntos
Desnitrificação , Fósforo , Reatores Biológicos/microbiologia , Nitrificação , Fósforo/metabolismo , Eliminação de Resíduos Líquidos
6.
Appl Environ Microbiol ; 68(5): 2285-93, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976099

RESUMO

Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Nitritos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Reatores Biológicos , Lipoproteínas/metabolismo , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...