Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950387

RESUMO

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

3.
Genome Biol ; 21(1): 181, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32727536

RESUMO

BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients' gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. CONCLUSION: Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Elementos de DNA Transponíveis , Receptores ErbB/genética , Genes erbB , Glioma/genética , Animais , Carcinogênese , Receptores ErbB/metabolismo , Instabilidade Genômica , Humanos , Camundongos Transgênicos , Terapia de Alvo Molecular , Mutagênese Insercional , Neoplasias Experimentais , Proteínas do Tecido Nervoso , Sequenciamento do Exoma
4.
Nat Commun ; 10(1): 1415, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926791

RESUMO

B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.


Assuntos
Elementos de DNA Transponíveis/genética , Testes Genéticos/métodos , Linfoma de Células B/genética , Animais , Sistemas CRISPR-Cas/genética , Células Clonais , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Genes Supressores de Tumor , Estudos de Associação Genética , Humanos , Perda de Heterozigosidade , Linfoma de Células B/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo , Reprodutibilidade dos Testes
5.
Nat Biotechnol ; 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30480667

RESUMO

The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs. We performed the experiments in a range of genetic backgrounds and using alternative CRISPR-Cas9 reagents. In total, we gathered data for >109 mutational outcomes. The majority of reproducible mutations are insertions of a single base, short deletions or longer microhomology-mediated deletions. Each gRNA has an individual cell-line-dependent bias toward particular outcomes. We uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes. Improved understanding of sequence repair will allow better design of gene editing experiments.

6.
Nat Genet ; 49(5): 730-741, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28319090

RESUMO

The overwhelming number of genetic alterations identified through cancer genome sequencing requires complementary approaches to interpret their significance and interactions. Here we developed a novel whole-body insertional mutagenesis screen in mice, which was designed for the discovery of Pten-cooperating tumor suppressors. Toward this aim, we coupled mobilization of a single-copy inactivating Sleeping Beauty transposon to Pten disruption within the same genome. The analysis of 278 transposition-induced prostate, breast and skin tumors detected tissue-specific and shared data sets of known and candidate genes involved in cancer. We validated ZBTB20, CELF2, PARD3, AKAP13 and WAC, which were identified by our screens in multiple cancer types, as new tumor suppressor genes in prostate cancer. We demonstrated their synergy with PTEN in preventing invasion in vitro and confirmed their clinical relevance. Further characterization of Wac in vivo showed obligate haploinsufficiency for this gene (which encodes an autophagy-regulating factor) in a Pten-deficient context. Our study identified complex PTEN-cooperating tumor suppressor networks in different cancer types, with potential clinical implications.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Supressores de Tumor , Mutagênese Insercional , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Animais , Linhagem Celular , Movimento Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Dosagem de Genes , Predisposição Genética para Doença/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Knockout , Camundongos Transgênicos , Mutação , Próstata/citologia , Próstata/metabolismo , Interferência de RNA , Transdução de Sinais/genética
7.
Nat Protoc ; 12(2): 289-309, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28079877

RESUMO

Transposon-mediated forward genetics screening in mice has emerged as a powerful tool for cancer gene discovery. It pinpoints cancer drivers that are difficult to find with other approaches, thus complementing the sequencing-based census of human cancer genes. We describe here a large series of mouse lines for insertional mutagenesis that are compatible with two transposon systems, PiggyBac and Sleeping Beauty, and give guidance on the use of different engineered transposon variants for constitutive or tissue-specific cancer gene discovery screening. We also describe a method for semiquantitative transposon insertion site sequencing (QiSeq). The QiSeq library preparation protocol exploits acoustic DNA fragmentation to reduce bias inherent to widely used restriction-digestion-based approaches for ligation-mediated insertion site amplification. Extensive multiplexing in combination with next-generation sequencing allows affordable ultra-deep transposon insertion site recovery in high-throughput formats within 1 week. Finally, we describe principles of data analysis and interpretation for obtaining insights into cancer gene function and genetic tumor evolution.


Assuntos
Análise Mutacional de DNA/métodos , Elementos de DNA Transponíveis/genética , Genômica/métodos , Mutagênese Insercional , Neoplasias/genética , Animais , Fragmentação do DNA , Redes Reguladoras de Genes , Humanos , Camundongos , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico
8.
Nat Commun ; 7: 10770, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916719

RESUMO

Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research.


Assuntos
Carcinogênese/genética , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Proteína BRCA2/genética , Sistemas CRISPR-Cas , Deleção Cromossômica , Eletroporação , Engenharia Genética/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Mutação , Neoplasias Experimentais/genética , Filogenia , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de DNA , Transfecção/métodos , Translocação Genética/genética
9.
Proc Natl Acad Sci U S A ; 112(45): 13982-7, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508638

RESUMO

Here, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.


Assuntos
Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Genômica/métodos , Ensaios de Triagem em Larga Escala , Neoplasias Hepáticas/genética , Mutagênese/genética , Animais , Sequência de Bases , Marcação de Genes , Técnicas Histológicas , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Seleção Genética/genética
10.
Cell ; 162(1): 146-59, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140595

RESUMO

KRAS is one of the most frequently mutated oncogenes in human cancer. Despite substantial efforts, no clinically applicable strategy has yet been developed to effectively treat KRAS-mutant tumors. Here, we perform a cell-line-based screen and identify strong synergistic interactions between cell-cycle checkpoint-abrogating Chk1- and MK2 inhibitors, specifically in KRAS- and BRAF-driven cells. Mechanistically, we show that KRAS-mutant cancer displays intrinsic genotoxic stress, leading to tonic Chk1- and MK2 activity. We demonstrate that simultaneous Chk1- and MK2 inhibition leads to mitotic catastrophe in KRAS-mutant cells. This actionable synergistic interaction is validated using xenograft models, as well as distinct Kras- or Braf-driven autochthonous murine cancer models. Lastly, we show that combined checkpoint inhibition induces apoptotic cell death in KRAS- or BRAF-mutant tumor cells directly isolated from patients. These results strongly recommend simultaneous Chk1- and MK2 inhibition as a therapeutic strategy for the treatment of KRAS- or BRAF-driven cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Pontos de Checagem do Ciclo Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Células Tumorais Cultivadas
11.
Nat Genet ; 47(1): 47-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25485836

RESUMO

Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.


Assuntos
Transformação Celular Neoplásica/genética , Elementos de DNA Transponíveis/genética , Redes Reguladoras de Genes , Mutagênese Insercional , Neoplasias Pancreáticas/genética , Sequência de Aminoácidos , Animais , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Genes Sintéticos , Genes p16 , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mariposas/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patologia , ATPases Translocadoras de Prótons/genética , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/análise , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transgenes , Transposases/genética , Transposases/fisiologia
12.
Cancer Cell ; 24(1): 15-29, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23845441

RESUMO

We show that BRAF(V600E) initiates an alternative pathway to colorectal cancer (CRC), which progresses through a hyperplasia/adenoma/carcinoma sequence. This pathway underlies significant subsets of CRCs with distinctive pathomorphologic/genetic/epidemiologic/clinical characteristics. Genetic and functional analyses in mice revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. We further demonstrate dose-dependent effects of oncogenic signaling, with physiologic Braf(V600E) expression being sufficient for hyperplasia induction, but later stage intensified Mapk-signaling driving both tumor progression and activation of intrinsic tumor suppression. Such phenomena explain, for example, the inability of p53 to restrain tumor initiation as well as its importance in invasiveness control, and the late stage specificity of its somatic mutation. Finally, systematic drug screening revealed sensitivity of this CRC subtype to targeted therapeutics, including Mek or combinatorial PI3K/Braf inhibition.


Assuntos
Neoplasias Colorretais/etiologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Transformação Celular Neoplásica , Neoplasias Colorretais/tratamento farmacológico , Inibidor p16 de Quinase Dependente de Ciclina , Ensaios de Seleção de Medicamentos Antitumorais , Sistema de Sinalização das MAP Quinases , Camundongos , Instabilidade de Microssatélites , Invasividade Neoplásica , Proteínas de Neoplasias/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteína Supressora de Tumor p53/fisiologia , Via de Sinalização Wnt
13.
Science ; 330(6007): 1104-7, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20947725

RESUMO

Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.


Assuntos
Elementos de DNA Transponíveis , Genes Neoplásicos , Testes Genéticos/métodos , Mutagênese Insercional , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Oncogenes , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...