Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 36(9): 1823-1834, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33999456

RESUMO

Modifications to the constituents of the gut microbiome influence bone density and tissue-level strength, but the specific microbial components that influence tissue-level strength in bone are not known. Here, we selectively modify constituents of the gut microbiota using narrow-spectrum antibiotics to identify components of the microbiome associated with changes in bone mechanical and material properties. Male C57BL/6J mice (4 weeks) were divided into seven groups (n = 7-10/group) and had taxa within the gut microbiome removed through dosing with: (i) ampicillin; (ii) neomycin; (iii) vancomycin; (iv) metronidazole; (v) a cocktail of all four antibiotics together (with zero-calorie sweetener to ensure intake); (vi) zero-calorie sweetener only; or (vii) no additive (untreated) for 12 weeks. Individual antibiotics remove only some taxa from the gut, while the cocktail of all four removes almost all microbes. After accounting for differences in geometry, whole bone strength was reduced in animals with gut microbiome modified by neomycin (-28%, p = 0.002) and was increased in the group in which the gut microbiome was altered by sweetener alone (+39%, p < 0.001). Analysis of the fecal microbiota detected seven lower-ranked taxa differentially abundant in animals with impaired tissue-level strength and 14 differentially abundant taxa associated with increased tissue-level strength. Histological and serum markers of bone turnover and trabecular bone volume per tissue volume (BV/TV) did not differ among groups. These findings demonstrate that modifications to the taxonomic components of the gut microbiome have the potential to decrease or increase tissue-level strength of bone independent of bone quantity and without noticeable changes in bone turnover. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Microbioma Gastrointestinal , Animais , Densidade Óssea , Osso e Ossos , Fezes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
J Orthop Res ; 39(5): 1007-1016, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658313

RESUMO

Osteoarthritis is increasingly viewed as a heterogeneous disease with multiple phenotypic subgroups. Obesity enhances joint degeneration in mouse models of posttraumatic osteoarthritis (PTOA). Most models of PTOA involve damage to surrounding tissues caused by surgery/fracture; it is unclear if obesity enhances cartilage degeneration in the absence of surgery/fracture. We used a nonsurgical animal model of load-induced PTOA to determine the effect of obesity on cartilage degeneration 2 weeks after loading. Cartilage degeneration was caused by a single bout of cyclic tibial loading at either a high or moderate load magnitude in adult male mice with severe obesity (C57Bl6/J + high-fat diet), mild obesity (toll-like receptor 5 deficient mouse [TLR5KO]), or normal adiposity (C57Bl6/J mice + normal diet and TLR5KO mice in which obesity was prevented by manipulation of the gut microbiome). Two weeks after loading, cartilage degeneration occurred in limbs loaded at a high magnitude, as determined by OARSI scores (P < .001). However, the severity of cartilage damage did not differ among groups. Osteophyte width and synovitis of loaded limbs did not differ among groups. Furthermore, obesity did not enhance cartilage damage in limbs evaluated 6 weeks after loading. Constituents of the gut microbiota differed among groups. Our findings suggest that, in the absence of surgery/fracture, obesity may not influence cartilage loss after a single mechanical insult, suggesting that either damage to surrounding tissues or repeated mechanical insult is necessary for obesity to influence cartilage degeneration. These findings further illustrate heterogeneity in PTOA phenotypes and complex interactions between mechanical/metabolic factors in cartilage loss.


Assuntos
Cartilagem Articular/patologia , Obesidade/complicações , Osteoartrite/etiologia , Tíbia/lesões , Animais , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/patologia , Suporte de Carga
3.
Curr Osteoporos Rep ; 18(6): 677-683, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33030683

RESUMO

PURPOSE OF REVIEW: Osteoporosis is commonly diagnosed through the clinical assessment of bone quantity using bone mineral density; however, the primary clinical concern is bone fragility. Bone fragility is determined by both bone quantity and bone quality. Over the past decade, the gut microbiome has emerged as a factor that can regulate diseases throughout the body. This review discusses how microbial organisms and their genetic products that inhabit the gastrointestinal tract influence bone quantity, bone quality, and bone strength. RECENT FINDINGS: Recent studies have shown that the gut microbiome regulates bone loss during estrogen depletion and glucocorticoid treatment. A series of studies has also shown that the gut microbiome influences whole bone strength by modifying bone tissue quality. The possible links between the gut microbiome and bone tissue quality are discussed focusing on the effects of microbiome-derived vitamin K. We provide a brief introduction to the gut microbiome and how modifications to the gut microbiome may lead to changes in bone. The gut microbiome is a promising target for new therapeutic approaches that address bone quality in ways not possible with current interventions.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Animais , Densidade Óssea/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...