Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 101(11): 2705-2712, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28263224

RESUMO

BACKGROUND: Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived ß cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high ß cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. METHODS: Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. RESULTS: Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic ß cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. CONCLUSIONS: In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to ß cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and ß cell function and leads to increased inflammatory signaling.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Técnicas de Cultura de Tecidos , Adulto , Hipóxia Celular , Sobrevivência Celular , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Fatores de Tempo , Sobrevivência de Tecidos , Regulação para Cima
2.
J Comb Chem ; 6(1): 43-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14714983

RESUMO

One of the key elements in the drug discovery process is the use of automation to synthesize libraries of compounds for biological screening. The "split-and-mix" approaches in combinatorial chemistry have been recognized as extremely powerful techniques to access large numbers of compounds, while requiring only few reaction steps. However, the need for effective encoding/deconvolution strategies and demands for larger amounts of compounds have somewhat limited the use of these techniques in the pharmaceutical industry. In this paper, we describe a concept of directed sort and combine synthesis with spatially arranged arrays of macroscopic supports. Such a concept attempts to balance the number of reaction steps, the confidence in compound identity, and the quantity of synthesized compounds. Using three-dimensional arrays of frames each containing a two-dimensional array of macroscopic solid supports, we have conceptualized and developed a modular semiautomated system with a capacity of up to 100 000 compounds per batch. Modularity of this system enables flexibility either to produce large diverse combinatorial libraries or to synthesize more focused smaller libraries, both as single compounds in 12-15 micromol quantities. This method using sortable and spatially addressed arrays is exemplified by the synthesis of a 15 360 compound library.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...