Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychologia ; 159: 107956, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34265343

RESUMO

The left half of a centrally-viewed face contributes more strongly to recognition performance than the right. This left visual field (LVF) advantage is typically attributed to an untested assumption that face-selective cortex in the right hemisphere (RH) exhibits a contralateral bias, even for centrally-viewed faces. We tested the validity of this assumption using a behavioral measure of the LVF advantage and an fMRI experiment that measured laterality of face-selective cortex and neural contralateral bias. In the behavioral experiment, participants performed a chimeric face-matching task (Harrison and Strother, 2019). In the fMRI experiment, participants viewed chimeric faces comprised of face halves that either repeated or changed simultaneously in both hemifields, or repeated in one hemifield and changed in the other. This enabled us to measure lateralization of fMRI face-repetition suppression and hemifield-specific half-face sensitivity in face-selective cortex. We found that LVF bias in the fusiform face area (FFA) and right-lateralization of the FFA for changing versus repeated faces were both positively correlated with a behavioral measure of the LVF advantage for upright (but not inverted) faces. Results from regression analyses showed that LVF bias in the right FFA and FFA laterality make separable contributions to the prediction of our behavioral measure of the LVF bias for upright faces. Our results confirm a ubiquitous but previously untested assumption that RH superiority combined with contralateral bias in face-selective cortex explains the LVF advantage in face recognition. Specifically, our results show that neural LVF bias in the right FFA is sufficient to explain the relationship between FFA laterality and the perceptual LVF bias for centrally-viewed faces.


Assuntos
Reconhecimento Facial , Campos Visuais , Córtex Cerebral/diagnóstico por imagem , Face , Lateralidade Funcional , Humanos , Reconhecimento Visual de Modelos
2.
Atten Percept Psychophys ; 82(3): 1205-1220, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31773512

RESUMO

The tendency to perceive the identity of the left half of a centrally viewed face more strongly than that of the right half is associated with visual processing of faces in the right hemisphere (RH). Here we investigate conditions under which this well-known left visual field (LVF) half-face advantage fails to occur. Our findings challenge the sufficiency of its explanation as a function of RH specialization for face processing coupled with LVF-RH correspondence. In two experiments we show that the LVF half-face advantage occurs for normal faces and chimeric faces composed of different half-face identities. In a third experiment, we show that face inversion disrupts the LVF half-face advantage. In two additional experiments we show that half-faces viewed in isolation or paired with inverted half-faces fail to show the LVF advantage. Consistent with previous explanations of the LVF half-face advantage, our findings suggest that the LVF half-face advantage reflects RH superiority for processing faces and direct transfer of LVF face information to visual cortex in the RH. Critically, however, our findings also suggest the operation of a third factor, which involves the prioritization of face-processing resources to the LVF, but only when two upright face-halves compete for these resources. We therefore conclude that RH superiority alone does not suffice to explain the LVF advantage in face recognition. We also discuss the implications of our findings for specialized visual processing of faces by the right hemisphere, and we distinguish LVF advantages for faces viewed centrally and peripherally in divided field studies.


Assuntos
Reconhecimento Facial , Campos Visuais , Cognição , Lateralidade Funcional , Humanos , Orientação Espacial , Reconhecimento Visual de Modelos
4.
J Cogn Neurosci ; 31(7): 1018-1029, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30938590

RESUMO

Reading relies on the rapid visual recognition of words viewed in a wide variety of fonts. We used fMRI to identify neural populations showing reduced fMRI responses to repeated words displayed in different fonts ("font-invariant" repetition suppression). We also identified neural populations showing greater fMRI responses to words repeated in a changing font as compared with words repeated in the same font ("font-sensitive" release from repetition suppression). We observed font-invariant repetition suppression in two anatomically distinct regions of the left occipitotemporal cortex (OT), a "visual word form area" in mid-fusiform cortex, and a more posterior region in the middle occipital gyrus. In contrast, bilateral shape-selective lateral occipital cortex and posterior fusiform showed considerable sensitivity to font changes during the viewing of repeated words. Although the visual word form area and the left middle occipital gyrus showed some evidence of font sensitivity, both regions showed a relatively greater degree of font invariance than font sensitivity. Our results show that the neural mechanisms in the left OT involved in font-invariant word recognition are anatomically distinct from those sensitive to font-related shape changes. We conclude that font-invariant representation of visual word form is instantiated at multiple levels by anatomically distinct neural mechanisms within the left OT.


Assuntos
Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Leitura , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
5.
PLoS One ; 14(1): e0208318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629612

RESUMO

Lexical embedding is common in all languages and elicits mutual orthographic interference between an embedded word and its carrier. The neural basis of such interference remains unknown. We employed a novel fMRI prime-target embedded word paradigm to test for involvement of a visual word form area (VWFA) in left ventral occipitotemporal cortex in co-activation of embedded words and their carriers. Based on the results of related fMRI studies we predicted either enhancement or suppression of fMRI responses to embedded words initially viewed as primes, and repeated in the context of target carrier words. Our results clearly showed enhancement of fMRI responses in the VWFA to embedded-carrier word pairs as compared to unrelated prime-target pairs. In contrast to non-visual language-related areas (e.g., left inferior frontal gyrus), enhanced fMRI responses did not occur in the VWFA when embedded-carrier word pairs were restricted to the left visual hemifield. Our finding of fMRI enhancement in the VWFA is novel evidence of its involvement in representational rivalry between orthographically similar words, and the co-activation of embedded words and their carriers.


Assuntos
Imageamento por Ressonância Magnética , Percepção Visual/fisiologia , Vocabulário , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa
6.
Psychon Bull Rev ; 25(4): 1494-1499, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29717412

RESUMO

Unlike most objects, letter recognition is closely tied to orientation and mirroring, which in some cases (e.g., b and d), defines letter identity altogether. We combined a divided field paradigm with a negative priming procedure to examine the relationship between mirror generalization, its suppression during letter recognition, and language-related visual processing in the left hemisphere. In our main experiment, observers performed a centrally viewed letter-recognition task, followed by an object-recognition task performed in either the right or the left visual hemifield. The results show clear evidence of inhibition of mirror generalization for objects viewed in either hemifield but a right hemisphere advantage for visual recognition of mirrored and repeated objects. Our findings are consistent with an opponent relationship between symmetry-related visual processing in the right hemisphere and neurally recycled mechanisms in the left hemisphere used for visual processing of written language stimuli.


Assuntos
Dominância Cerebral , Idioma , Reconhecimento Visual de Modelos/fisiologia , Adulto , Feminino , Humanos , Masculino , Orientação Espacial , Tempo de Reação/fisiologia
7.
Atten Percept Psychophys ; 80(6): 1375-1389, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691762

RESUMO

Visual input typically includes a myriad of objects, some of which are selected for further processing. While these objects vary in shape and size, most evidence supporting object-based guidance of attention is drawn from paradigms employing two identical objects. Importantly, object size is a readily perceived stimulus dimension, and whether it modulates the distribution of attention remains an open question. Across four experiments, the size of the objects in the display was manipulated in a modified version of the two-rectangle paradigm. In Experiment 1, two identical parallel rectangles of two sizes (thin or thick) were presented. Experiments 2-4 employed identical trapezoids (each having a thin and thick end), inverted in orientation. In the experiments, one end of an object was cued and participants performed either a T/L discrimination or a simple target-detection task. Combined results show that, in addition to the standard object-based attentional advantage, there was a further attentional benefit for processing information contained in the thick versus thin end of objects. Additionally, eye-tracking measures demonstrated increased saccade precision towards thick object ends, suggesting that Fitts's Law may play a role in object-based attentional shifts. Taken together, these results suggest that object-based attentional selection is modulated by object width.


Assuntos
Atenção/fisiologia , Orientação/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Cognição/fisiologia , Sinais (Psicologia) , Humanos , Estimulação Luminosa , Tempo de Reação
8.
Neuropsychologia ; 100: 35-43, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396097

RESUMO

The human brain integrates hemifield-split visual information via interhemispheric transfer. The degree to which neural circuits involved in this process behave differently during word recognition as compared to object recognition is not known. Evidence from neuroimaging (fMRI) suggests that interhemispheric transfer during word viewing converges in the left hemisphere, in two distinct brain areas, an "occipital word form area" (OWFA) and a more anterior occipitotemporal "visual word form area" (VWFA). We used a novel fMRI half-field repetition technique to test whether or not these areas also integrate nonverbal hemifield-split string stimuli of similar visual complexity. We found that the fMRI responses of both the OWFA and VWFA while viewing nonverbal stimuli were strikingly different than those measured during word viewing, especially with respect to half-stimulus changes restricted to a single hemifield. We conclude that normal reading relies on left-lateralized neural mechanisms, which integrate hemifield-split visual information for words but not for nonverbal stimuli.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Imageamento por Ressonância Magnética , Vias Visuais/diagnóstico por imagem , Percepção Visual/fisiologia , Adulto , Análise de Variância , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Oxigênio/sangue , Estimulação Luminosa , Adulto Jovem
9.
J Vis ; 17(2): 8, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28245488

RESUMO

Stable object perception relies on persistent yet temporary neural representations under constantly fluctuating stimulus conditions. The mechanisms by which such representations are formed and maintained are not fully understood but presumably involve interplay between early and higher tier visual cortical mechanisms. Some neurophysiological models of feature binding in early visual cortex predict persistent contour perception under certain stimulus conditions. Here we show that the duration of contour persistence reflects the persistent operation of visual mechanisms sensitive to contour smoothness, which also influences contour visibility more generally under highly camouflaging stimulus conditions. We distinguish the effect of contour smoothness on contour persistence from observer bias, which also contributes to the surprisingly long duration of contour persistence. We conclude that the strong modulatory effects of contour smoothness on persistence are due to the sustained reverberation of local and global contour-binding mechanisms in visual cortex, which form an important basis of perceptual continuity and stable object perception.


Assuntos
Percepção de Forma/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Viés , Feminino , Humanos , Masculino , Variações Dependentes do Observador , Estimulação Luminosa , Adulto Jovem
10.
J Neurosci Res ; 95(1-2): 617-625, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870438

RESUMO

This Mini-Review summarizes a wide range of sex differences in the human visual system, with a primary focus on sex differences in visual perception and its neural basis. We highlight sex differences in both basic and high-level visual processing, with evidence from behavioral, neurophysiological, and neuroimaging studies. We argue that sex differences in human visual processing, no matter how small or subtle, support the view that females and males truly see the world differently. We acknowledge some of the controversy regarding sex differences in human vision and propose that such controversy should be interpreted as a source of motivation for continued efforts to assess the validity and reliability of published sex differences and for continued research on sex differences in human vision and the nervous system in general. © 2016 Wiley Periodicals, Inc.


Assuntos
Caracteres Sexuais , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Humanos
11.
PLoS One ; 11(7): e0158804, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27389017

RESUMO

Deficits in the visual processing of faces in autism spectrum disorder (ASD) individuals may be due to atypical brain organization and function. Studies assessing asymmetric brain function in ASD individuals have suggested that facial processing, which is known to be lateralized in neurotypical (NT) individuals, may be less lateralized in ASD. Here we used functional near-infrared spectroscopy (fNIRS) to first test this theory by comparing patterns of lateralized brain activity in homologous temporal-occipital facial processing regions during observation of faces in an ASD group and an NT group. As expected, the ASD participants showed reduced right hemisphere asymmetry for human faces, compared to the NT participants. Based on recent behavioral reports suggesting that robots can facilitate increased verbal interaction over human counterparts in ASD, we also measured responses to faces of robots to determine if these patterns of activation were lateralized in each group. In this exploratory test, both groups showed similar asymmetry patterns for the robot faces. Our findings confirm existing literature suggesting reduced asymmetry for human faces in ASD and provide a preliminary foundation for future testing of how the use of categorically different social stimuli in the clinical setting may be beneficial in this population.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Reconhecimento Facial , Robótica , Espectroscopia de Luz Próxima ao Infravermelho , Adolescente , Adulto , Comportamento , Encéfalo , Mapeamento Encefálico , Criança , Emoções/fisiologia , Feminino , Humanos , Testes de Inteligência , Masculino , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiopatologia , Adulto Jovem
12.
J Cogn Neurosci ; 28(2): 252-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26544919

RESUMO

Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.


Assuntos
Lateralidade Funcional/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Leitura , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Face , Feminino , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa/métodos , Campos Visuais/fisiologia , Adulto Jovem
13.
Atten Percept Psychophys ; 77(8): 2740-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26269386

RESUMO

Objects in the world often are occluded and in motion. The visible fragments of such objects are revealed at different times and locations in space. To form coherent representations of the surfaces of these objects, the visual system must integrate local form information over space and time. We introduce a new illusion in which a rigidly rotating square is perceived on the basis of sequentially presented Pacman inducers. The illusion highlights two fundamental processes that allow us to perceive objects whose form features are revealed over time: Spatiotemporal Form Integration (STFI) and Position Updating. STFI refers to the spatial integration of persistent representations of local form features across time. Position updating of these persistent form representations allows them to be integrated into a rigid global motion percept. We describe three psychophysical experiments designed to identify spatial and temporal constraints that underlie these two processes and a fourth experiment that extends these findings to more ecologically valid stimuli. Our results indicate that although STFI can occur across relatively long delays between successive inducers (i.e., greater than 500 ms), position updating is limited to a more restricted temporal window (i.e., ~300 ms or less), and to a confined range of spatial (mis)alignment. These findings lend insight into the limits of mechanisms underlying the visual system's capacity to integrate transient, piecemeal form information, and support coherent object representations in the ever-changing environment.


Assuntos
Percepção de Forma/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Ilusões/fisiologia , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Rotação , Adulto Jovem
14.
Front Hum Neurosci ; 9: 77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741271

RESUMO

The Ebbinghaus illusion is a classic example of the influence of a contextual surround on the perceived size of an object. Here, we introduce a novel variant of this illusion called the Dynamic Ebbinghaus illusion in which the size and eccentricity of the surrounding inducers modulates dynamically over time. Under these conditions, the size of the central circle is perceived to change in opposition with the size of the inducers. Interestingly, this illusory effect is relatively weak when participants are fixating a stationary central target, less than half the magnitude of the classic static illusion. However, when the entire stimulus translates in space requiring a smooth pursuit eye movement to track the target, the illusory effect is greatly enhanced, almost twice the magnitude of the classic static illusion. A variety of manipulations including target motion, peripheral viewing, and smooth pursuit eye movements all lead to dramatic illusory effects, with the largest effect nearly four times the strength of the classic static illusion. We interpret these results in light of the fact that motion-related manipulations lead to uncertainty in the image size representation of the target, specifically due to added noise at the level of the retinal input. We propose that the neural circuits integrating visual cues for size perception, such as retinal image size, perceived distance, and various contextual factors, weight each cue according to the level of noise or uncertainty in their neural representation. Thus, more weight is given to the influence of contextual information in deriving perceived size in the presence of stimulus and eye motion. Biologically plausible models of size perception should be able to account for the reweighting of different visual cues under varying levels of certainty.

15.
Front Hum Neurosci ; 9: 95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755640

RESUMO

Curvature is a highly informative visual cue for shape perception and object recognition. We introduce a novel illusion-the Lemon Illusion-in which subtle illusory curvature is perceived along contour regions that are devoid of physical curvature. We offer several perceptual demonstrations and observations that lead us to conclude that the Lemon Illusion is an instance of a more general illusory curvature phenomenon, one in which the presence of contour curvature discontinuities lead to the erroneous extension of perceived curvature. We propose that this erroneous extension of perceived curvature results from the interaction of neural mechanisms that operate on spatially local contour curvature signals with higher-tier mechanisms that serve to establish more global representations of object shape. Our observations suggest that the Lemon Illusion stems from discontinuous curvature transitions between rectilinear and curved contour segments. However, the presence of curvature discontinuities is not sufficient to produce the Lemon Illusion, and the minimal conditions necessary to elicit this subtle and insidious illusion are difficult to pin down.

16.
Front Psychol ; 5: 1273, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25414689

RESUMO

Contour integration is a fundamental form of perceptual organization. We introduce a new method of studying the mechanisms responsible for contour integration. This method capitalizes on the perceptual persistence of contours under conditions of impending camouflage. Observers viewed arrays of randomly arranged line segments upon which circular contours comprised of similar line segments were superimposed via abrupt onset. Crucially, these contours remained visible for up to a few seconds following onset, but eventually disappeared due to the camouflaging effects of surrounding background line segments. Our main finding was that the duration of contour visibility depended on the distance and degree of co-alignment between adjacent contour segments such that relatively dense smooth contours persisted longest. The stimulus-related effects reported here parallel similar results from contour detection studies, and complement previous reported top-down influences on contour persistence (Strother et al., 2011). We propose that persistent contour visibility reflects the sustained activity of recurrent processing loops within and between visual cortical areas involved in contour integration and other important stages of visual object recognition.

17.
J Cogn Neurosci ; 26(5): 1154-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24345179

RESUMO

Humans typically rely upon vision to identify object shape, but we can also recognize shape via touch (haptics). Our haptic shape recognition ability raises an intriguing question: To what extent do visual cortical shape recognition mechanisms support haptic object recognition? We addressed this question using a haptic fMRI repetition design, which allowed us to identify neuronal populations sensitive to the shape of objects that were touched but not seen. In addition to the expected shape-selective fMRI responses in dorsal frontoparietal areas, we observed widespread shape-selective responses in the ventral visual cortical pathway, including primary visual cortex. Our results indicate that shape processing via touch engages many of the same neural mechanisms as visual object recognition. The shape-specific repetition effects we observed in primary visual cortex show that visual sensory areas are engaged during the haptic exploration of object shape, even in the absence of concurrent shape-related visual input. Our results complement related findings in visually deprived individuals and highlight the fundamental role of the visual system in the processing of object shape.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Projetos Piloto , Adulto Jovem
18.
Eur J Neurosci ; 36(9): 3291-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22845758

RESUMO

Movements of the fingers, hand and arm involve overlapping neural representations in primary motor cortex (M1). Monkey M1 exhibits a core-surround organisation in which cortical representation of the hand and fingers is surrounded by representations of the wrist, elbow and shoulder. A potentially homologous organisation in human M1 has only been observed in a single study, a functional MRI (fMRI) study by [J.D. Meier, T.N. Aflalo, S. Kastner & M.S. Graziano.(2008) J Neurophysiol, 100(4), 1800-1812]. The results of their study suggested a double representation of the wrist in human M1, an unprecedented finding. Our purpose was to document and simultaneously provide evidence that would extend the presence of double representation of the wrist to that of the elbow. Using fMRI, we observed somatotopic maps in M1 and the supplementary motor area (SMA), the only other cortical area that showed robust within-limb somatotopy during self-timed finger, wrist and elbow movements. We observed double wrist and elbow representation that bracketed finger fMRI responses in M1 and the SMA. Our results show that the cortical locations of these double representations are well predicted by local cortical anatomy. Double representation of the wrist and elbow is important because it violates the traditional somatotopic progression in M1 but it is consistent with the representation of synergistic movements involving adjacent effectors.


Assuntos
Imagem Corporal , Córtex Motor/fisiologia , Adulto , Mapeamento Encefálico , Cotovelo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Punho
19.
J Exp Psychol Hum Percept Perform ; 38(4): 827-832, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22486306

RESUMO

We perceive structure through a process of perceptual organization. Here we report a new perceptual organization phenomenon-the facilitation of visual grouping by global curvature. Observers viewed patterns that they perceived as organized into collections of curves. The patterns were perceptually ambiguous such that the perceived orientation of the patterns varied from trial to trial. When patterns were sufficiently dense and proximity was equated for the predominant perceptual alternatives, observers tended to perceive the organization with the greatest curvature. This effect is tantamount to visual grouping by maximal curvature and thus demonstrates an unprecedented effect of global structure on perceptual organization. We account for this result with a model that predicts the perceived organization of a pattern as function of its nonaccidentality, which we define as the probability that it could have occurred by chance. Our findings demonstrate a novel relationship between the geometry of a pattern and the visual salience of global structure.


Assuntos
Percepção de Forma/fisiologia , Teoria Gestáltica , Reconhecimento Visual de Modelos/fisiologia , Adulto , Teorema de Bayes , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
20.
J Cogn Neurosci ; 24(4): 905-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22220730

RESUMO

We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.


Assuntos
Mapeamento Encefálico , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/irrigação sanguínea , Vias Visuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...