Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911920

RESUMO

Numerous mutants of the nematode Caenorhabditis elegans with surface abnormalities have been isolated by utilizing their resistance to a variety of bacterial pathogens (Microbacterium nematophilum, Yersinia pseudotuberculosis, and 2 Leucobacter strains), all of which are able to cause disease or death when worms are grown on bacterial lawns containing these pathogens. Previous work led to the identification of 9 srf or bus genes; here, we report molecular identification and characterization of a further 10 surface-affecting genes. Three of these were found to encode factors implicated in glycosylation (srf-2, bus-5, and bus-22), like several of those previously reported; srf-2 belongs to the GT92 family of putative galactosyltransferases, and bus-5 is homologous to human dTDP-D-glucose 4,6-dehydratase, which is implicated in Catel-Manzke syndrome. Other genes encoded proteins with sequence similarity to phosphatidylinositol phosphatases (bus-6), Patched-related receptors (ptr-15/bus-13), steroid dehydrogenases (dhs-5/bus-21), or glypiation factors (bus-24). Three genes appeared to be nematode-specific (srf-5, bus-10, and bus-28). Many mutants exhibited cuticle fragility as revealed by bleach and detergent sensitivity; this fragility was correlated with increased drug sensitivity, as well as with abnormal skiddy locomotion. Most of the genes examined were found to be expressed in epidermal seam cells, which appear to be important for synthesizing nematode surface coat. The results reveal the genetic and biochemical complexity of this critical surface layer, and provide new tools for its analysis.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Humanos , Proteínas de Caenorhabditis elegans/genética , Mutação , Caenorhabditis elegans/genética , Bactérias/metabolismo , Glicosilação
2.
Genetics ; 218(4)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33914877

RESUMO

A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality [like erd-2.1(RNAi); erd-2.2(RNAi)], indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Genes Supressores , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Sinapses/metabolismo , Mutações Sintéticas Letais , Proteínas Vesiculares de Transporte de Acetilcolina/química , Proteínas Vesiculares de Transporte de Acetilcolina/genética
3.
Genetics ; 200(1): 237-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808955

RESUMO

Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host-pathogen interactions.


Assuntos
Aminas Biogênicas/biossíntese , Biopterinas/análogos & derivados , Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Animais , Biopterinas/genética , Biopterinas/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Serotonina/metabolismo
4.
PLoS One ; 9(10): e107250, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25296196

RESUMO

Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode's mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections.


Assuntos
Bactérias/patogenicidade , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Mucinas/metabolismo , Polissacarídeos/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Cromatografia Gasosa-Espectrometria de Massas , Mucinas/genética , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Curr Biol ; 23(21): 2157-61, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24206844

RESUMO

The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi.


Assuntos
Actinomycetales/fisiologia , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Actinomycetales/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cabo Verde , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
6.
Genetics ; 187(1): 141-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980242

RESUMO

The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property--contact recognition of hermaphrodites by males during mating--was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.


Assuntos
Aderência Bacteriana , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Bacillus/fisiologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Glicosilação , Organismos Hermafroditas/citologia , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Organismos Hermafroditas/fisiologia , Locomoção , Masculino , Dados de Sequência Molecular , Mutação , Fenótipo , Comportamento Sexual Animal , Propriedades de Superfície
7.
J Biol Chem ; 285(23): 17662-72, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385555

RESUMO

Microbacterium nematophilum causes a deleterious infection of the C. elegans hindgut initiated by adhesion to rectal and anal cuticle. C. elegans bus-2 mutants, which are resistant to M. nematophilum and also to the formation of surface biofilms by Yersinia sp., carry genetic lesions in a putative glycosyltransferase containing conserved domains of core-1 beta1,3-galactosyltransferases. bus-2 is predicted to act in the synthesis of core-1 type O-glycans. This observation implies that the infection requires the presence of host core-1 O-glycoconjugates and is therefore carbohydrate-dependent. Chemical analysis reported here reveals that bus-2 is indeed deficient in core-1 O-glycans. These mutants also exhibit a new subclass of O-glycans whose structures were determined by high performance tandem mass spectrometry; these are highly fucosylated and have a novel core that contains internally linked GlcA. Lectin studies showed that core-1 glycans and this novel class of O-glycans are both expressed in the tissue that is infected in the wild type worms. In worms having the bus-2 genetic background, core-1 glycans are decreased, whereas the novel fucosyl O-glycans are increased in abundance in this region. Expression analysis using a red fluorescent protein marker showed that bus-2 is expressed in the posterior gut, cuticle seam cells, and spermatheca, the first two of which are likely to be involved in secreting the carbohydrate-rich surface coat of the cuticle. Therefore, in the bus-2 background of reduced core-1 O-glycans, the novel fucosyl glycans likely replace or mask remaining core-1 ligands, leading to the resistance phenotype. There are more than 35 Microbacterium species, some of which are pathogenic in man. This study is the first to analyze the biochemistry of adhesion to a host tissue by a Microbacterium species.


Assuntos
Farmacorresistência Bacteriana , Mutação , Polissacarídeos/genética , Animais , Aderência Bacteriana , Biofilmes , Caenorhabditis elegans , Carboidratos/química , Glicoproteínas/química , Ligantes , Proteínas Luminescentes/química , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Oligossacarídeos/química , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Proteína Vermelha Fluorescente
8.
Gene ; 284(1-2): 133-40, 2002 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-11891054

RESUMO

Lipopolysaccharide (LPS) is important for the virulence of Neisseria meningitidis, and is the target of immune responses. We took advantage of a monoclonal antibody (Mab B5) that recognises phosphoethanolamine (PEtn) attached to the inner core of meningococcal LPS to identify genes required for the addition of PEtn to LPS. Insertional mutants that lost Mab B5 reactivity were isolated and characterised, but failed to yield genes directly responsible for PEtn substitution. Subsequent genetic linkage analysis was used to define a region of DNA containing a single intact open reading frame which is sufficient to confer B5 reactivity to a B5 negative meningococcal isolate. The results provide an initial characterisation of the genetic basis of a key, immunodominant epitope of meningococcal LPS.


Assuntos
Etanolaminas/metabolismo , Genes Bacterianos/genética , Lipopolissacarídeos/metabolismo , Neisseria meningitidis/genética , Anticorpos Monoclonais/imunologia , DNA Bacteriano/genética , DNA Bacteriano/imunologia , Etanolaminas/imunologia , Ligação Genética , Lipopolissacarídeos/imunologia , Mutação , Neisseria meningitidis/imunologia , Neisseria meningitidis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA