Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38501120

RESUMO

In cryogenic electron microscopy (cryo-EM), specimen preparation remains a bottleneck despite recent advancements. Classical plunge freezing methods often result in issues like aggregation and preferred orientations at the air/water interface. Many alternative methods have been proposed, but there remains a lack a universal solution, and multiple techniques are often required for challenging samples. Here, we demonstrate the use of lipid nanotubes with nickel NTA headgroups as a platform for cryo-EM sample preparation. His-tagged specimens of interest are added to the tubules, and they can be frozen by conventional plunge freezing. We show that the nanotubes protect samples from the air/water interface and promote a wider range of orientations. The reconstruction of average subtracted tubular regions (RASTR) method allows for the removal of the nanotubule signal from the cryo-EM images resulting in isolated images of specimens of interest. Testing with ß-galactosidase validates the method's ability to capture particles at lower concentrations, overcome preferred orientations, and achieve near-atomic resolution reconstructions. Since the nanotubules can be identified and targeted automatically at low magnification, the method enables fully automated data collection. Furthermore, the particles on the tubes can be automatically identified and centered using 2D classification enabling particle picking without requiring prior information. Altogether, our approach that we call specimen preparation on a tube RASTR (SPOT-RASTR) holds promise for overcoming air-water interface and preferred orientation challenges and offers the potential for fully automated cryo-EM data collection and structure determination.

2.
Biophys J ; 121(10): 1799-1812, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35443926

RESUMO

Precursor molecules for biomass incorporation must be imported into cells and made available to the molecular machines that build the cell. Sulfur-containing macromolecules require that sulfur be in its S2- oxidation state before assimilation into amino acids, cofactors, and vitamins that are essential to organisms throughout the biosphere. In α-proteobacteria, NADPH-dependent assimilatory sulfite reductase (SiR) performs the final six-electron reduction of sulfur. SiR is a dodecameric oxidoreductase composed of an octameric flavoprotein reductase (SiRFP) and four hemoprotein metalloenzyme oxidases (SiRHPs). SiR performs the electron transfer reduction reaction to produce sulfide from sulfite through coordinated domain movements and subunit interactions without release of partially reduced intermediates. Efforts to understand the electron transfer mechanism responsible for SiR's efficiency are confounded by structural heterogeneity arising from intrinsically disordered regions throughout its complex, including the flexible linker joining SiRFP's flavin-binding domains. As a result, high-resolution structures of SiR dodecamer and its subcomplexes are unknown, leaving a gap in the fundamental understanding of how SiR performs this uniquely large-volume electron transfer reaction. Here, we use deuterium labeling, in vitro reconstitution, analytical ultracentrifugation (AUC), small-angle neutron scattering (SANS), and neutron contrast variation (NCV) to observe the relative subunit positions within SiR's higher-order assembly. AUC and SANS reveal SiR to be a flexible dodecamer and confirm the mismatched SiRFP and SiRHP subunit stoichiometry. NCV shows that the complex is asymmetric, with SiRHP on the periphery of the complex and the centers of mass between SiRFP and SiRHP components over 100 Å apart. SiRFP undergoes compaction upon assembly into SiR's dodecamer and SiRHP adopts multiple positions in the complex. The resulting map of SiR's higher-order structure supports a cis/trans mechanism for electron transfer between domains of reductase subunits as well as between tightly bound or transiently interacting reductase and oxidase subunits.


Assuntos
Nêutrons , Oxirredutases , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Sulfito Redutase (NADPH)/química , Sulfito Redutase (NADPH)/metabolismo , Enxofre
3.
J Struct Biol ; 213(2): 107724, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722582

RESUMO

Sulfite reductase (SiR), a dodecameric complex of flavoprotein reductase subunits (SiRFP) and hemoprotein oxidase subunits (SiRHP), reduces sulfur for biomass incorporation. Electron transfer within SiR requires intra- and inter-subunit interactions that are mediated by the relative position of each protein, governed by flexible domain movements. Using small-angle neutron scattering, we report the first solution structures of SiR heterodimers containing a single copy of each subunit. These structures show how the subunits bind and how both subunit binding and oxidation state impact SiRFP's conformation. Neutron contrast matching experiments on selectively deuterated heterodimers allow us to define the contribution of each subunit to the solution scattering. SiRHP binding induces a change in the position of SiRFP's flavodoxin-like domain relative to its ferredoxin-NADP+ reductase domain while compacting SiRHP's N-terminus. Reduction of SiRFP leads to a more open structure relative to its oxidized state, re-positioning SiRFP's N-terminal flavodoxin-like domain towards the SiRHP binding position. These structures show, for the first time, how both SiRHP binding to, and reduction of, SiRFP positions SiRFP for electron transfer between the subunits.


Assuntos
Sulfito Redutase (NADPH)/química , Sulfito Redutase (NADPH)/metabolismo , Ferredoxinas/metabolismo , Modelos Moleculares , Difração de Nêutrons , Oxirredução , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Espalhamento a Baixo Ângulo , Soluções , Solventes/química , Ultracentrifugação/métodos
4.
RNA ; 27(2): 221-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219089

RESUMO

During their maturation, nascent 40S subunits enter a translation-like quality control cycle, where they are joined by mature 60S subunits to form 80S-like ribosomes. While these assembly intermediates are essential for maturation and quality control, how they form, and how their structure promotes quality control, remains unknown. To address these questions, we determined the structure of an 80S-like ribosome assembly intermediate to an overall resolution of 3.4 Å. The structure, validated by biochemical data, resolves a large body of previously paradoxical data and illustrates how assembly and translation factors cooperate to promote the formation of an interface that lacks many mature subunit contacts but is stabilized by the universally conserved methyltransferase Dim1. We also show how Tsr1 enables this interface by blocking the canonical binding of eIF5B to 40S subunits, while maintaining its binding to 60S. The structure also shows how this interface leads to unfolding of the platform, which allows for temporal regulation of the ATPase Fap7, thus linking 40S maturation to quality control during ribosome assembly.


Assuntos
Adenilato Quinase/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Proteínas Nucleares/genética , Nucleosídeo-Trifosfatase/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Sítios de Ligação , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Biogênese de Organelas , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Met Ions Life Sci ; 202020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32851831

RESUMO

In nature, sulfur exists in a range of oxidation states and the two-electron reduced form is the most commonly found in biomolecules like the sulfur-containing amino acids cysteine and methionine, some cofactors, and polysaccharides. Sulfur is reduced through two pathways: dissimilation, where sulfite (SO2-3) is used as terminal electron acceptor; and assimilation, where sulfite is reduced to sulfide (S2-) for incorporation into biomass. The pathways are independent, but share the sulfite reductase function, in which a single enzyme reduces sulfite by six electrons to make sulfide. With few exceptions, sulfite reductases from either pathway are iron metalloenzymes with structurally diverse configurations that range from monomers to tetramers. The hallmark of sulfite reductase is its catalytic center made of an iron-containing porphyrinoid called siroheme that is covalently coupled to a [4Fe-4S] cluster through a shared cysteine ligand. The substrate evolves through a push-pull mechanism, where electron transfer is coupled to three dehydration steps. Siroheme is an isobacteriochlorin that is more readily oxidized than protoporphyin IX-derived hemes. It is synthesized from uroporphyrinogen III in three steps (methylation, a dehydrogenation, and ferrochelation) that are performed by enzymes with homology to those involved in cobalamin synthesis. Future research will need to address how the siroheme-[4Fe-4S] clusters are assembled into apo-sulfite and nitrite reductases. The chapter will discuss how environmental microbes use sulfite reductase to survive in a range of ecosystems; how atomic-resolution structures of dissimilatory and assimilatory sulfite reductases reveal their ancient homology; how the siroheme-[4Fe-4S] cluster active site catalyzes the six-electron reduction of sulfite to sulfide; and how siroheme is synthesized across diverse microrganisms.


Assuntos
Heme/análogos & derivados , Ecossistema , Heme/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
6.
Nat Commun ; 11(1): 864, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054833

RESUMO

Siroheme is the central cofactor in a conserved class of sulfite and nitrite reductases that catalyze the six-electron reduction of sulfite to sulfide and nitrite to ammonia. In Salmonella enterica serovar Typhimurium, siroheme is produced by a trifunctional enzyme, siroheme synthase (CysG). A bifunctional active site that is distinct from its methyltransferase activity catalyzes the final two steps, NAD+-dependent dehydrogenation and iron chelation. How this active site performs such different chemistries is unknown. Here, we report the structures of CysG bound to precorrin-2, the initial substrate; sirohydrochlorin, the dehydrogenation product/chelation substrate; and a cobalt-sirohydrochlorin product. We identified binding poses for all three tetrapyrroles and tested the roles of specific amino acids in both activities to give insights into how a bifunctional active site catalyzes two different chemistries and acts as an iron-specific chelatase in the final step of siroheme synthesis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Heme/análogos & derivados , Metiltransferases/química , Metiltransferases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Eletroquímica , Ferroquelatase/química , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/biossíntese , Heme/química , Metiltransferases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Especificidade por Substrato , Tetrapirróis/química , Tetrapirróis/metabolismo , Uroporfirinas/química , Uroporfirinas/metabolismo
7.
Molecules ; 24(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126138

RESUMO

Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K+. In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5' untranslated region of the Zea mays hexokinase4 gene. This sequence adopted an extensively polymorphic G-quadruplex, including non-canonical bulged G-quadruplex folds that co-existed in solution. The nature of this polymorphism depended, in part, on the incorporation of different sets of adjacent guanines into a quadruplex core, which permitted the formation of the different conformations. Additionally, we showed that the maize homolog of the human nucleoside diphosphate kinase (NDPK) NM23-H2 protein-ZmNDPK1-specifically recognizes and promotes formation of a subset of these conformations. Heteromorphic G-quadruplexes play a role in microorganisms' ability to evade the host immune system, so we also discuss how the underlying properties that determine heterogeneity of this sequence could apply to microorganism G4s.


Assuntos
DNA de Plantas/química , Hexoquinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Zea mays/enzimologia , Regiões 5' não Traduzidas , Sítios de Ligação , Dicroísmo Circular , DNA de Plantas/metabolismo , Quadruplex G , Hexoquinase/química , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrofotometria Ultravioleta , Zea mays/genética
8.
J Struct Biol ; 205(2): 170-179, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30654136

RESUMO

This is the first X-ray crystal structure of the monomeric form of sulfite reductase (SiR) flavoprotein (SiRFP-60) that shows the relationship between its major domains in an extended position not seen before in any homologous diflavin reductases. Small angle neutron scattering confirms this novel domain orientation also occurs in solution. Activity measurements of SiR and SiRFP variants allow us to propose a novel mechanism for electron transfer from the SiRFP reductase subunit to its oxidase metalloenzyme partner that, together, make up the SiR holoenzyme. Specifically, we propose that SiR performs its 6-electron reduction via intramolecular or intermolecular electron transfer. Our model explains both the significance of the stoichiometric mismatch between reductase and oxidase subunits in the holoenzyme and how SiR can handle such a large volume electron reduction reaction that is at the heart of the sulfur bio-geo cycle.


Assuntos
Flavoproteínas/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sulfito Redutase (NADPH)/metabolismo , Cristalografia por Raios X , Flavoproteínas/química , NADPH-Ferri-Hemoproteína Redutase/química , Sulfito Redutase (NADPH)/química
9.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 933-940, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852252

RESUMO

The siroheme-containing subunit from the multimeric hemoflavoprotein NADPH-dependent sulfite reductase (SiR/SiRHP) catalyzes the six electron-reduction of SO32- to S2-. Siroheme is an iron-containing isobacteriochlorin that is found in sulfite and homologous siroheme-containing nitrite reductases. Siroheme does not work alone but is covalently coupled to a Fe4S4 cluster through one of the cluster's ligands. One long-standing hypothesis predicted from this observation is that the environment of one iron-containing cofactor influences the properties of the other. We tested this hypothesis by identifying three amino acids (F437, M444, and T477) that interact with the Fe4S4 cluster and probing the effect of altering them to alanine on the function and structure of the resulting enzymes by use of activity assays, X-ray crystallographic analysis, and EPR spectroscopy. We showed that F437 and M444 gate access for electron transfer to the siroheme-cluster assembly and the direct hydrogen bond between T477 and one of the cluster sulfides is important for determining the geometry of the siroheme active site.


Assuntos
Proteínas de Bactérias/fisiologia , Escherichia coli/enzimologia , Compostos Ferrosos/metabolismo , Sulfito Redutase (Ferredoxina)/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredução , Mutação Puntual , Sulfito Redutase (Ferredoxina)/química , Sulfito Redutase (Ferredoxina)/metabolismo
10.
Biochemistry ; 57(26): 3764-3772, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29787249

RESUMO

The central step in the assimilation of sulfur is a six-electron reduction of sulfite to sulfide, catalyzed by the oxidoreductase NADPH-dependent assimilatory sulfite reductase (SiR). SiR is composed of two subunits. One is a multidomain flavin binding reductase (SiRFP) and the other an iron-containing oxidase (SiRHP). Both enzymes are primarily globular, as expected from their functions as redox enzymes. Consequently, we know a fair amount about their structures but not how they assemble. Curiously, both structures have conspicuous regions that are structurally undefined, leaving questions about their functions and raising the possibility that they are critical in forming the larger complex. Here, we used ultraviolet-visible and circular dichroism spectroscopy, isothermal titration calorimetry, proteolytic sensitivity tests, electrospray ionization mass spectrometry, and activity assays to explore the effect of altering specific amino acids in SiRFP on their function in the holoenzyme complex. Additionally, we used computational analysis to predict the propensity for intrinsic disorder within both subunits and found that SiRHP's N-terminus is predicted to have properties associated with intrinsic disorder. Both proteins also contained internal regions with properties indicative of intrinsic disorder. We showed that SiRHP's N-terminal disordered region is critical for complex formation. Together with our analysis of SiRFP amino acid variants, we show how molecular interactions outside the core of each SiR globular enzyme drive complex assembly of this prototypical oxidoreductase.


Assuntos
Escherichia coli/metabolismo , Sulfito Redutase (NADPH)/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , NADP/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sulfito Redutase (NADPH)/química , Termodinâmica
11.
J Struct Biol ; 200(3): 343-359, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842338

RESUMO

Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups.


Assuntos
Bacteriófagos/química , Bacteriófagos/genética , Capsídeo/química , Genoma Viral , Sinorhizobium meliloti/virologia , Bacteriófagos/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Endodesoxirribonucleases/genética , Genes Bacterianos , Processamento de Imagem Assistida por Computador/métodos , Fases de Leitura Aberta , Filogenia , Proteínas Virais/metabolismo , Vírion
12.
Structure ; 25(2): 329-340, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111018

RESUMO

Late-stage 40S ribosome assembly is a highly regulated dynamic process that occurs in the cytoplasm, alongside the full translation machinery. Seven assembly factors (AFs) regulate and facilitate maturation, but the mechanisms through which they work remain undetermined. Here, we present a series of structures of the immature small subunit (pre-40S) determined by three-dimensional (3D) cryoelectron microscopy with 3D sorting to assess the molecule's heterogeneity. These structures demonstrate an extensive structural heterogeneity of interface AFs that likely regulates subunit joining during 40S maturation. We also present structural models for the beak and the platform, two regions where the low resolution of previous studies did not allow for localization of AFs and the rRNA, respectively. These models are supported by biochemical analyses using point variants and suggest that maturation of the 18S 3' end is regulated by dissociation of the AF Dim1 from the subunit interface, consistent with previous biochemical analyses.


Assuntos
Heterogeneidade Genética , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
13.
PLoS Biol ; 14(6): e1002480, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280440

RESUMO

DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed "helicases," their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked.


Assuntos
RNA Helicases DEAD-box/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Hidrólise , Modelos Moleculares , Conformação Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
J Virol ; 89(21): 10945-58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311868

RESUMO

UNLABELLED: Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE: Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.


Assuntos
Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Capsídeo/fisiologia , Genoma Viral/genética , Modelos Moleculares , Sinorhizobium meliloti/virologia , Bacteriófagos/química , Bacteriófagos/classificação , Sequência de Bases , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie
15.
J Biol Chem ; 290(31): 19319-33, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26088143

RESUMO

Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the ß subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8ß4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Sulfito Redutase (NADPH)/química , Sequência de Aminoácidos , Domínio Catalítico , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
J Cell Biol ; 208(6): 745-59, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25778921

RESUMO

Casein kinase 1δ/ε (CK1δ/ε) and their yeast homologue Hrr25 are essential for cell growth. Further, CK1δ is overexpressed in several malignancies, and CK1δ inhibitors have shown promise in several preclinical animal studies. However, the substrates of Hrr25 and CK1δ/ε that are necessary for cell growth and survival are unknown. We show that Hrr25 is essential for ribosome assembly, where it phosphorylates the assembly factor Ltv1, which causes its release from nascent 40S subunits and allows subunit maturation. Hrr25 inactivation or expression of a nonphosphorylatable Ltv1 variant blocked Ltv1 release in vitro and in vivo, and prevented entry into the translation-like quality control cycle. Conversely, phosphomimetic Ltv1 variants rescued viability after Hrr25 depletion. Finally, Ltv1 knockdown in human breast cancer cells impaired apoptosis induced by CK1δ/ε inhibitors, establishing that the antiproliferative activity of these inhibitors is due, at least in part, to disruption of ribosome assembly. These findings validate the ribosome assembly pathway as a novel target for the development of anticancer therapeutics.


Assuntos
Caseína Quinase I/fisiologia , Caseína Quinase Idelta/fisiologia , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Linhagem Celular Tumoral , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/citologia
17.
Biochemistry ; 54(9): 1743-57, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25679041

RESUMO

Noncanonical forms of DNA like the guanine quadruplex (G4) play important roles in regulating transcription and translation through interactions with their protein partners. Although potential G4 elements have been identified in or near genes from species diverse as bacteria, mammals, and plants, little is known about how they might function as cis-regulatory elements or as binding sites for trans-acting protein partners. In fact, until now no G4 binding partners have been identified in the plant kingdom. Here, we report on the cloning and characterization of the first plant-kingdom gene known to encode a G4-binding protein, maize (Zea mays L.) nucleoside diphosphate kinase1 (ZmNDPK1). Structural characterization by X-ray crystallography reveals that it is a homohexamer, akin to other known NDPKs like the human homologue NM23-H2. Further probing into the G4-binding properties of both NDPK homologues suggests that ZmNDPK1 possesses properties distinct from that of NM23-H2, which is known to interact with a G-rich sequence element upstream of the c-myc gene and, in doing so, modulate its expression. Indeed, ZmNDPK1 binds the folded G4 with low nanomolar affinity but corresponding unfolded G-rich DNA more weakly, whereas NM23-H2 binds both folded and unfolded G4 with low nanomolar affinities; nonetheless, both homologues appear to stabilize folded DNAs whether they were prefolded or not. We also demonstrate that the G4-binding activity of ZmNDPK1 is independent of nucleotide binding and kinase activity, suggesting that the G4-binding region and the enzyme active sites are separate. Together, these findings establish a broad evolutionary conservation of some NDPKs as G4-DNA binding enzymes, but with potentially distinct biochemical properties that may reflect divergent evolution or species-specific deployment of these elements in gene regulatory processes.


Assuntos
Quadruplex G , Instabilidade Genômica , Nucleosídeo NM23 Difosfato Quinases/genética , Zea mays/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Clonagem Molecular , DNA de Plantas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Homologia de Sequência , Zea mays/enzimologia
18.
J Genet Genomics ; 41(12): 627-47, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25527104

RESUMO

The G-quadruplex (G4) elements comprise a class of nucleic acid structures formed by stacking of guanine base quartets in a quadruple helix. This G4 DNA can form within or across single-stranded DNA molecules and is mutually exclusive with duplex B-form DNA. The reversibility and structural diversity of G4s make them highly versatile genetic structures, as demonstrated by their roles in various functions including telomere metabolism, genome maintenance, immunoglobulin gene diversification, transcription, and translation. Sequence motifs capable of forming G4 DNA are typically located in telomere repeat DNA and other non-telomeric genomic loci. To investigate their potential roles in a large-genome model plant species, we computationally identified 149,988 non-telomeric G4 motifs in maize (Zea mays L., B73 AGPv2), 29% of which were in non-repetitive genomic regions. G4 motif hotspots exhibited non-random enrichment in genes at two locations on the antisense strand, one in the 5' UTR and the other at the 5' end of the first intron. Several genic G4 motifs were shown to adopt sequence-specific and potassium-dependent G4 DNA structures in vitro. The G4 motifs were prevalent in key regulatory genes associated with hypoxia (group VII ERFs), oxidative stress (DJ-1/GATase1), and energy status (AMPK/SnRK) pathways. They also showed statistical enrichment for genes in metabolic pathways that function in glycolysis, sugar degradation, inositol metabolism, and base excision repair. Collectively, the maize G4 motifs may represent conditional regulatory elements that can aid in energy status gene responses. Such a network of elements could provide a mechanistic basis for linking energy status signals to gene regulation in maize, a model genetic system and major world crop species for feed, food, and fuel.


Assuntos
DNA de Plantas/genética , Quadruplex G , Genes de Plantas/genética , Genoma de Planta/genética , Zea mays/genética , Regiões 3' não Traduzidas/genética , Metabolismo dos Carboidratos/genética , Dicroísmo Circular , DNA de Plantas/química , Metabolismo Energético/genética , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , Modelos Genéticos , Consumo de Oxigênio/genética , Zea mays/metabolismo
19.
Virology ; 450-451: 84-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24503070

RESUMO

Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria.


Assuntos
Bacteriófago T4/classificação , Bacteriófago T4/isolamento & purificação , Genoma Viral , Filogenia , Proteoma/genética , Sinorhizobium meliloti/virologia , Proteínas Virais/genética , Bacteriófago T4/genética , Dados de Sequência Molecular , Proteoma/metabolismo , Proteínas Virais/metabolismo
20.
Virology ; 450-451: 205-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24503083

RESUMO

ΦM12 is the first example of a T=19l geometry capsid, encapsulating the recently sequenced genome. Here, we present structures determined by cryo-EM of full and empty capsids. The structure reveals the pattern for assembly of 1140 HK97-like capsid proteins, pointing to interactions at the pseudo 3-fold symmetry axes that hold together the asymmetric unit. The particular smooth surface of the capsid, along with a lack of accessory coat proteins encoded by the genome, suggest that this interface is the primary mechanism for capsid assembly. Two-dimensional averages of the tail, including the neck and baseplate, reveal that ΦM12 has a relatively narrow neck that attaches the tail to the capsid, as well as a three-layer baseplate. When free from DNA, the icosahedral edges expand by about 5nm, while the vertices stay at the same position, forming a similarly smooth, but bowed, T=19l icosahedral capsid.


Assuntos
Bacteriófago T4/isolamento & purificação , Bacteriófago T4/ultraestrutura , Capsídeo/ultraestrutura , Sinorhizobium meliloti/virologia , Sequência de Aminoácidos , Bacteriófago T4/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...