Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 53(1): 73, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507523

RESUMO

BACKGROUND: India is the largest milk producer globally, with the largest proportion of cattle milk production coming from smallholder farms with an average herd size of less than two milking cows. These cows are mainly undefined multi-generation crosses between exotic dairy breeds and indigenous Indian cattle, with no performance or pedigree recording. Therefore, implementing genetic improvement based on genetic evaluation has not yet been possible. We present the first results from a large smallholder performance recording program in India, using single nucleotide polymorphism (SNP) genotypes to estimate genetic parameters for monthly test-day (TD) milk records and to obtain and validate genomic estimated breeding values (GEBV). RESULTS: The average TD milk yield under the high, medium, and low production environments were 9.64, 6.88, and 4.61 kg, respectively. In the high production environment, the usual profile of a lactation curve was evident, whereas it was less evident in low and medium production environments. There was a clear trend of an increasing milk yield with an increasing Holstein Friesian (HF) proportion in the high production environment, but no increase above intermediate grades in the medium and low production environments. Trends for Jersey were small but yield estimates had a higher standard error than HF. Heritability estimates for TD yield across the lactation ranged from 0.193 to 0.250, with an average of 0.230. The additive genetic correlations between TD yield at different times in lactation were high, ranging from 0.846 to 0.998. The accuracy of phenotypic validation of GEBV from the method that is believed to be the least biased was 0.420, which was very similar to the accuracy obtained from the average prediction error variance of the GEBV. CONCLUSIONS: The results indicate strong potential for genomic selection to improve milk production of smallholder crossbred cows in India. The performance of cows with different breed compositions can be determined in different Indian environments, which makes it possible to provide better advice to smallholder farmers on optimum breed composition for their environment.


Assuntos
Bovinos/genética , Indústria de Laticínios , Genômica , Lactação/genética , Leite , Animais , Cruzamento , Feminino , Genótipo , Índia , Linhagem
2.
Genet Sel Evol ; 53(1): 47, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074236

RESUMO

BACKGROUND: The genetic structure of a diverse set of 15 Indian indigenous breeds and non-descript indigenous cattle sampled from eight states was examined, based on 777 k single nucleotide polymorphism (SNP) genotypes obtained on 699 animals, with sample sizes ranging from 17 to 140 animals per breed. To date, this is the largest and most detailed assessment of the genetic diversity of Indian cattle breeds. RESULTS: Admixture analyses revealed that 109 of the indigenous animals analyzed had more than 1% Bos taurus admixture of relatively recent origin. Pure indigenous animals were defined as having more than 99% Bos indicus ancestry. Assessment of the genetic diversity within and between breeds using principal component analyses, F statistics, runs of homozygosity, the genomic relationship matrix, and maximum likelihood clustering based on allele frequencies revealed a low level of genetic diversity among the indigenous breeds compared to that of Bos taurus breeds. Correlations of SNP allele frequencies between breeds indicated that the genetic variation among the Bos indicus breeds was remarkably low. In addition, the variance in allele frequencies represented less than 1.5% between the Indian indigenous breeds compared to about 40% between Bos taurus dairy breeds. Effective population sizes (Ne) increased during a period post-domestication, notably for Ongole cattle, and then declined during the last 100 generations. Although we found that most of the identified runs of homozygosity are short in the Indian indigenous breeds, indicating no recent inbreeding, the high FROH coefficients and low FIS values point towards small population sizes. Nonetheless, the Ne of the Indian indigenous breeds is currently still larger than that of Bos taurus dairy breeds. CONCLUSIONS: The changes in the estimates of effective population size are consistent with domestication from a large native population followed by consolidation into breeds with a more limited population size. The surprisingly low genetic diversity among Indian indigenous cattle breeds might be due to their large Ne since their domestication, which started to decline only 100 generations ago, compared to approximately 250 to 500 generations for Bos taurus dairy cattle.


Assuntos
Bovinos/genética , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Animais , Genótipo , Índia
3.
Front Genet ; 12: 584355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841491

RESUMO

Several studies have evaluated computational methods that infer the haplotypes from population genotype data in European cattle populations. However, little is known about how well they perform in African indigenous and crossbred populations. This study investigates: (1) global and local ancestry inference; (2) heterozygosity proportion estimation; and (3) genotype imputation in West African indigenous and crossbred cattle populations. Principal component analysis (PCA), ADMIXTURE, and LAMP-LD were used to analyse a medium-density single nucleotide polymorphism (SNP) dataset from Senegalese crossbred cattle. Reference SNP data of East and West African indigenous and crossbred cattle populations were used to investigate the accuracy of imputation from low to medium-density and from medium to high-density SNP datasets using Minimac v3. The first two principal components differentiated Bos indicus from European Bos taurus and African Bos taurus from other breeds. Irrespective of assuming two or three ancestral breeds for the Senegalese crossbreds, breed proportion estimates from ADMIXTURE and LAMP-LD showed a high correlation (r ≥ 0.981). The observed ancestral origin heterozygosity proportion in putative F1 crosses was close to the expected value of 1.0, and clearly differentiated F1 from all other crosses. The imputation accuracies (estimated as correlation) between imputed and the real data in crossbred animals ranged from 0.142 to 0.717 when imputing from low to medium-density, and from 0.478 to 0.899 for imputation from medium to high-density. The imputation accuracy was generally higher when the reference data came from the same geographical region as the target population, and when crossbred reference data was used to impute crossbred genotypes. The lowest imputation accuracies were observed for indigenous breed genotypes. This study shows that ancestral origin heterozygosity can be estimated with high accuracy and will be far superior to the use of observed individual heterozygosity for estimating heterosis in African crossbred populations. It was not possible to achieve high imputation accuracy in West African crossbred or indigenous populations based on reference data sets from East Africa, and population-specific genotyping with high-density SNP assays is required to improve imputation.

4.
J Anim Breed Genet ; 138(6): 698-707, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33687116

RESUMO

Reliably identifying breed proportions in crossbred cattle in smallholder farms is a crucial step to improve mating decisions and optimizing management in these systems. High-density genotype information is able to estimate higher-order breed proportions accurately, but, are too expensive for mass application in smallholder systems. We used high-density genotype information (777 k SNPs) of 623 crossbred cattle from India that had Holstein-Friesian (HFX) and/or Jersey and indigenous breeds in their ancestry to select a smaller number of SNPs for breed proportion estimation. The accuracy of estimates obtained from panels with 100-500 SNP was compared to estimates based on all SNPs. Panels were selected for highest absolute allele frequency difference between exotic dairy versus indigenous Bos indicus, or between HFX versus Jersey breeds. A step-wise pruning approach was developed showing that and increased physical distances between markers of 8.5 Mb improved breed proportion estimation compared to a standard 1 Mb distance. A panel of 500 SNPs optimized to estimate HFX versus Jersey versus indicine ancestry was able to estimate indicine breed proportions with r2  = .991, HFX proportions with r2  = .979 and Jersey proportions with r2  = .949. The number of markers was a deciding factor in estimation accuracy, together with the distribution of markers across the genome.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Frequência do Gene , Genótipo , Reprodução
5.
Genet Sel Evol ; 53(1): 21, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653262

RESUMO

BACKGROUND: Understanding the relationship between genetic admixture and phenotypic performance is crucial for the optimization of crossbreeding programs. The use of small sets of informative ancestry markers can be a cost-effective option for the estimation of breed composition and for parentage assignment in situations where pedigree recording is difficult. The objectives of this study were to develop small single nucleotide polymorphism (SNP) panels that can accurately estimate the total dairy proportion and assign parentage in both West and East African crossbred dairy cows. METHODS: Medium- and high-density SNP genotype data (Illumina BovineSNP50 and BovineHD Beadchip) for 4231 animals sampled from African crossbreds, African Bos taurus, European Bos taurus, Bos indicus, and African indigenous populations were used. For estimating breed composition, the absolute differences in allele frequency were calculated between pure ancestral breeds to identify SNPs with the highest discriminating power, and different combinations of SNPs weighted by ancestral origin were tested against estimates based on all available SNPs. For parentage assignment, informative SNPs were selected based on the highest minor allele frequency (MAF) in African crossbred populations assuming two Scenarios: (1) parents were selected among all the animals with known genotypes, and (2) parents were selected only among the animals known to be a parent of at least one progeny. RESULTS: For the medium-density genotype data, SNPs selected for the largest differences in allele frequency between West African indigenous and European Bos taurus breeds performed best for most African crossbred populations and achieved a prediction accuracy (r2) for breed composition of 0.926 to 0.961 with 200 SNPs. For the high-density dataset, a panel with 70% of the SNPs selected on their largest difference in allele frequency between African and European Bos taurus performed best or very near best across all crossbred populations with r2 ranging from 0.978 to 0.984 with 200 SNPs. In all African crossbred populations, unambiguous parentage assignment was possible with ≥ 300 SNPs for the majority of the panels for Scenario 1 and ≥ 200 SNPs for Scenario 2. CONCLUSIONS: The identified low-cost SNP assays could overcome incomplete or inaccurate pedigree records in African smallholder systems and allow effective breeding decisions to produce progeny of desired breed composition.


Assuntos
Cruzamento/métodos , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/fisiologia , Laticínios/normas , Feminino , Frequência do Gene , Masculino , Linhagem , Reprodução
6.
Genet Sel Evol ; 49(1): 67, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899355

RESUMO

BACKGROUND: Smallholder dairy farming in much of the developing world is based on the use of crossbred cows that combine local adaptation traits of indigenous breeds with high milk yield potential of exotic dairy breeds. Pedigree recording is rare in such systems which means that it is impossible to make informed breeding decisions. High-density single nucleotide polymorphism (SNP) assays allow accurate estimation of breed composition and parentage assignment but are too expensive for routine application. Our aim was to determine the level of accuracy achieved with low-density SNP assays. METHODS: We constructed subsets of 100 to 1500 SNPs from the 735k-SNP Illumina panel by selecting: (a) on high minor allele frequencies (MAF) in a crossbred population; (b) on large differences in allele frequency between ancestral breeds; (c) at random; or (d) with a differential evolution algorithm. These panels were tested on a dataset of 1933 crossbred dairy cattle from Kenya/Uganda and on crossbred populations from Ethiopia (N = 545) and Tanzania (N = 462). Dairy breed proportions were estimated by using the ADMIXTURE program, a regression approach, and SNP-best linear unbiased prediction, and tested against estimates obtained by ADMIXTURE based on the 735k-SNP panel. Performance for parentage assignment was based on opposing homozygotes which were used to calculate the separation value (sv) between true and false assignments. RESULTS: Panels of SNPs based on the largest differences in allele frequency between European dairy breeds and a combined Nelore/N'Dama population gave the best predictions of dairy breed proportion (r2 = 0.962 to 0.994 for 100 to 1500 SNPs) with an average absolute bias of 0.026. Panels of SNPs based on the highest MAF in the crossbred population (Kenya/Uganda) gave the most accurate parentage assignments (sv = -1 to 15 for 100 to 1500 SNPs). CONCLUSIONS: Due to the different required properties of SNPs, panels that did well for breed composition did poorly for parentage assignment and vice versa. A combined panel of 400 SNPs was not able to assign parentages correctly, thus we recommend the use of 200 SNPs either for breed proportion prediction or parentage assignment, independently.


Assuntos
Cruzamento , Bovinos/genética , Indústria de Laticínios/métodos , Testes Genéticos , Animais , Feminino , Frequência do Gene , Linhagem , Polimorfismo de Nucleotídeo Único/genética
7.
BMC Genet ; 17(1): 108, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418004

RESUMO

BACKGROUND: Two separate domestication events gave rise to humped zebu cattle in India and humpless taurine cattle in the Fertile Crescent of the Near and Middle East. Iran covers the Eastern side of the Fertile Crescent and exhibits a variety of native cattle breeds, however, only little is known about the admixture patterns of Iranian cattle and their contribution to the formation of modern cattle breeds. RESULTS: Genome-wide data (700 k chip) of eight Iranian cattle breeds (Sarabi N = 19, Kurdi N = 7, Taleshi N = 7, Mazandarani N = 10, Najdi N = 7, Pars N = 7, Kermani N = 9, and Sistani N = 9) were collected from across Iran. For a local assessment, taurine (Holstein and Jersey) and indicine (Brahman) outgroup samples were used. For the global perspective, 134 world-wide cattle breeds were included. Between breed variation amongst Iranian cattle explained 60 % (p < 0.001) of the total molecular variation and 82.88 % (p < 0.001) when outgroups were included. Several migration edges were observed within the Iranian cattle breeds. The highest indicine proportion was found in Sistani. All Iranian breeds with higher indicine ancestry were more admixed with a complex migration pattern. Nineteen founder populations most accurately explained the admixture of 44 selected representative cattle breeds (standard error 0.4617). Low levels of African ancestry were identified in Iranian cattle breeds (on average 7.5 %); however, the signal did not persist through all analyses. Admixture and migration analyses revealed minimal introgression from Iranian cattle into other taurine cattle (Holstein, Hanwoo, Anatolian breeds). CONCLUSION: The eight Iranian cattle breeds feature a discrete genetic composition which should be considered in conservation programs aimed at preserving unique species and genetic diversity. Despite a complex admixture pattern among Iranian cattle breeds, there was no strong introgression from other world-wide cattle breeds into Iranian cattle and vice versa. Considering Iran's central location of cattle domestication, Iranian cattle might represent a local domestication event that remained contained and did not contribute to the formation of modern breeds, or genetics of the ancestral population that gave rise to modern cattle is too diluted to be linked directly to any current cattle breeds.


Assuntos
Bovinos/genética , Variação Genética , Animais , Cromossomos de Mamíferos/genética , Genética Populacional , Genótipo
8.
PLoS One ; 11(3): e0151324, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023061

RESUMO

Korean Hanwoo cattle have been subjected to intensive artificial selection over the past four decades to improve meat production traits. Another three cattle varieties very closely related to Hanwoo reside in Korea (Jeju Black and Brindle) and in China (Yanbian). These breeds have not been part of a breeding scheme to improve production traits. Here, we compare the selected Hanwoo against these similar but presumed to be unselected populations to identify genomic regions that have been under recent selection pressure due to the breeding program. Rsb statistics were used to contrast the genomes of Hanwoo versus a pooled sample of the three unselected population (UN). We identified 37 significant SNPs (FDR corrected) in the HW/UN comparison and 21 known protein coding genes were within 1 MB to the identified SNPs. These genes were previously reported to affect traits important for meat production (14 genes), reproduction including mammary gland development (3 genes), coat color (2 genes), and genes affecting behavioral traits in a broader sense (2 genes). We subsequently sequenced (Illumina HiSeq 2000 platform) 10 individuals of the brown Hanwoo and the Chinese Yanbian to identify SNPs within the candidate genomic regions. Based on allele frequency differences, haplotype structures, and literature research, we singled out one non-synonymous SNP in the APP gene (APP: c.569C>T, Ala199Val) and predicted the mutational effect on the protein structure. We found that protein-protein interactions might be impaired due to increased exposed hydrophobic surfaces of the mutated protein. The APP gene has also been reported to affect meat tenderness in pigs and obesity in humans. Meat tenderness has been linked to intramuscular fat content, which is one of the main breeding goals for brown Hanwoo, potentially supporting a causal influence of the herein described nsSNP in the APP gene.


Assuntos
Cruzamento , Bovinos/genética , Genoma , Genômica , Carne , Seleção Genética , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Análise por Conglomerados , Frequência do Gene/genética , Variação Genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , República da Coreia
9.
BMC Evol Biol ; 15: 284, 2015 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-26677975

RESUMO

BACKGROUND: The main cattle breed in Korea is the brown Hanwoo, which has been under artificial selection within a national breeding program for several decades. Varieties of the Hanwoo known as Jeju Black and Chikso were not included in the breeding program and remained isolated from the effects of recent artificial selection advancements. We analysed the Jeju Black and Chikso populations in regards to their genetic variability, state of inbreeding, as well as level of differentiation from the mainland Hanwoo population. RESULTS: Jeju Black and Chikso were found to have small estimated effective population sizes (N e ) of only 11 and 7, respectively. Despite a small N e , higher than expected heterozygosity levels were observed (0.303 and 0.306), however, lower allelic richness was found for the two island populations (1.76 and 1.77) compared to the mainland population (1.81). The increase in heterozygosity could be due to environmental disease challenges that promoted maintenance of higher genetic variability; however, no direct proof exists. Increased heterozygosity due to a first generation crossing of genetically different populations is not recorded. The differentiation between the Korean populations had F ST values between 0.014 and 0.036 which is not as high as the differentiation within European beef or dairy cattle breeds (0.047-0.111). This suggests that the three populations have not separated into independent breeds. CONCLUSION: Results agree with an island model of speciation where the brown Hanwoo represents the ancestral breed, whilst the Jeju Black and Chikso diverge from this common ancestor, following different evolutionary trajectories. Nevertheless, differences are minor and whether Jeju Black and Chikso cattle will develop into discrete breeds or reintegrate with the main population has to be seen in the future and will largely depend on human management decisions. This offers a rare opportunity to accompany the development of new breeds but also poses challenges on how to preserve these incipient breeds and ensure their long term viability.


Assuntos
Bovinos/genética , Variação Genética , Modelos Genéticos , Animais , Cruzamento , Bovinos/classificação , Genética Populacional , Endogamia , Ilhas , República da Coreia
10.
Front Genet ; 6: 118, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859260

RESUMO

Lactation is a dynamic process, which evolved to meet dietary demands of growing offspring. At the same time, the mother's metabolism changes to meet the high requirements of nutrient supply to the offspring. Through strong artificial selection, the strain of milk production on dairy cows is often associated with impaired health and fertility. This led to the incorporation of functional traits into breeding aims to counteract this negative association. Potentially, distributing the total quantity of milk per lactation cycle more equally over time could reduce the peak of physiological strain and improve health and fertility. During lactation many factors affect the production of milk: food intake; digestion, absorption, and transportation of nutrients; blood glucose levels; activity of cells in the mammary gland, liver, and adipose tissue; synthesis of proteins and fat in the secretory cells; and the metabolic and regulatory pathways that provide fatty acids, amino acids, and carbohydrates. Whilst the endocrine regulation and physiology of the dynamic process of milk production seems to be understood, the genetics that underlie these dynamics are still to be uncovered. Modeling of longitudinal traits and estimating the change in additive genetic variation over time has shown that the genetic contribution to the expression of a trait depends on the considered time-point. Such time-dependent studies could contribute to the discovery of missing heritability. Only very few studies have estimated exact gene and marker effects at different time-points during lactation. The most prominent gene affecting milk yield and milk fat, DGAT1, exhibits its main effects after peak production, whilst the casein genes have larger effects in early lactation. Understanding the physiological dynamics and elucidating the time-dependent genetic effects behind dynamically expressed traits will contribute to selection decisions to further improve productive and healthy breeding populations.

11.
BMC Genomics ; 14: 16, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23324137

RESUMO

BACKGROUND: This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G(3) populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G(3)-animals. RESULTS: We found that individuals with larger muscles have significantly lower total body fat (r = -0.28) and IMF (r = -0.64), and in females, a lower WHC (r = -0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = -0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (-1.15%), and lower IMF in M. longissimus (-0.13%) and M. quadriceps (-0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (-0.55 g) was identified on chromosome 16 at 94 Mb (86-94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. CONCLUSION: The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock.


Assuntos
Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Tecido Adiposo/química , Animais , Bovinos , Cromossomos/genética , Feminino , Genótipo , Glicogênio/química , Glicogênio/metabolismo , Masculino , Camundongos , Modelos Animais , Músculo Esquelético/química , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Suínos , Água/metabolismo
12.
BMC Genet ; 13: 108, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23244492

RESUMO

BACKGROUND: This study focused on the dynamics of genome-wide effects on five milk production and eight fertility traits as well as genetic correlations between the traits. For 2,405 Holstein Friesian bulls, estimated breeding values (EBVs) were used. The production traits were additionally assessed in 10-day intervals over the first 60 lactation days, as this stage is physiologically the most crucial time in milk production. RESULTS: SNPs significantly affecting the EBVs of the production traits could be separated into three groups according to the development of the size of allele effects over time: 1) increasing effects for all traits; 2) decreasing effects for all traits; and 3) increasing effects for all traits except fat yield. Most of the significant markers were found within 22 haplotypes spanning on average 135,338 bp. The DGAT1 region showed high density of significant markers, and thus, haplotype blocks. Further functional candidate genes are proposed for haplotype blocks of significant SNPs (KLHL8, SICLEC12, AGPAT6 and NID1). Negative genetic correlations were found between yield and fertility traits, whilst content traits showed positive correlations with some fertility traits. Genetic correlations became stronger with progressing lactation. When correlations were estimated within genotype classes, correlations were on average 0.1 units weaker between production and fertility traits when the yield increasing allele was present in the genotype. CONCLUSIONS: This study provides insight into the expression of genetic effects during early lactation and suggests possible biological explanations for the presented time-dependent effects. Even though only three markers were found with effects on fertility, the direction of genetic correlations within genotype classes between production and fertility traits suggests that alleles increasing the milk production do not affect fertility in a more negative way compared to the decreasing allele.


Assuntos
Bovinos/genética , Fertilidade/genética , Lactação/genética , Reprodução/genética , Animais , Cruzamento , Feminino , Estudos de Associação Genética , Genótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Fatores de Tempo
13.
J Appl Genet ; 52(4): 459-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21660490

RESUMO

The bovine growth hormone receptor (GHR) gene has been identified as a strong positional and functional candidate gene influencing milk production. A non-synonymous single nucleotide polymorphism (SNP) in exon 8 leads to a phenylalanine to tyrosine amino acid substitution (F279Y) in the receptor. The aim of the study was to estimate the effects of the F279Y mutation on milk yield, fat, protein, casein, and lactose yield and content, as well as somatic cell score (SCS), in a German Holstein dairy cattle population. The analysis of 1,370 dairy cows confirmed a strong association of the F279Y polymorphism with milk yield, as well as with fat, protein, and casein contents. Furthermore, increasing effects on lactose yield and content for the 279Y allele were found. Even though the tyrosine variant occurred as the minor allele (16.5%), its substitution effects were 320 kg (305 d), 0.02 kg per day, and 0.07 kg per day for milk, casein, and lactose yields, respectively. The same allele had negative effects on fat, protein, and casein contents. Finally, the high-milk-yield tyrosine allele was also associated with lower SCS (p < 0.05). The data support the high potential of the F279Y polymorphism as a marker for the improvement of milk traits in selection programs.


Assuntos
Bovinos/genética , Lactação/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Receptores da Somatotropina/genética , Animais , Contagem de Células , Análise Mutacional de DNA , Gorduras/metabolismo , Feminino , Frequência do Gene , Genótipo , Alemanha , Lactose/metabolismo , Leite/citologia , Leite/metabolismo , Proteínas do Leite/metabolismo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...