Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186002, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977616

RESUMO

We present a comprehensive investigation of the Berezinskii-Kosterlitz-Thouless transition in ultrathin strongly disordered NbN films. Measurements of resistance, current-voltage characteristics, and kinetic inductance on the very same device reveal a consistent picture of a sharp unbinding transition of vortex-antivortex pairs that fit standard renormalization group theory without extra assumptions in terms of inhomogeneity. Our experiments demonstrate that the previously observed broadening of the transition is not an intrinsic feature of strongly disordered superconductors and provide a clean starting point for the study of dynamical effects at the Berezinskii-Kosterlitz-Thouless transition.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37054907

RESUMO

Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.


Assuntos
Ferro , Pseudomonas aeruginosa , Ferro/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fosfolipídeos/metabolismo , Proteômica
3.
Nat Commun ; 13(1): 4266, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871226

RESUMO

Nonreciprocal transport refers to charge transfer processes that are sensitive to the bias polarity. Until recently, nonreciprocal transport was studied only in dissipative systems, where the nonreciprocal quantity is the resistance. Recent experiments have, however, demonstrated nonreciprocal supercurrent leading to the observation of a supercurrent diode effect in Rashba superconductors. Here we report on a supercurrent diode effect in NbSe2 constrictions obtained by patterning NbSe2 flakes with both even and odd layer number. The observed rectification is a consequence of the valley-Zeeman spin-orbit interaction. We demonstrate a rectification efficiency as large as 60%, considerably larger than the efficiency of devices based on Rashba superconductors. In agreement with recent theory for superconducting transition metal dichalcogenides, we show that the effect is driven by the out-of-plane component of the magnetic field. Remarkably, we find that the effect becomes field-asymmetric in the presence of an additional in-plane field component transverse to the current direction. Supercurrent diodes offer a further degree of freedom in designing superconducting quantum electronics with the high degree of integrability offered by van der Waals materials.

4.
Nat Nanotechnol ; 17(1): 39-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34795437

RESUMO

Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin-orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive. Here we engineer fully superconducting non-reciprocal devices based on highly transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link the non-reciprocal supercurrent to an asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient. A semiquantitative model explains well the main features of our experimental data. Non-reciprocal Josephson junctions have the potential to become for superconducting circuits what pn junctions are for traditional electronics, enabling new non-dissipative circuit elements.

5.
Entropy (Basel) ; 23(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945879

RESUMO

A unified view on macroscopic thermodynamics and quantum transport is presented. Thermodynamic processes with an exchange of energy between two systems necessarily involve the flow of other balancable quantities. These flows are first analyzed using a simple drift-diffusion model, which includes the thermoelectric effects, and connects the various transport coefficients to certain thermodynamic susceptibilities and a diffusion coefficient. In the second part of the paper, the connection between macroscopic thermodynamics and quantum statistics is discussed. It is proposed to employ not particles, but elementary Fermi- or Bose-systems as the elementary building blocks of ideal quantum gases. In this way, the transport not only of particles but also of entropy can be derived in a concise way, and is illustrated both for ballistic quantum wires, and for diffusive conductors. In particular, the quantum interference of entropy flow is in close correspondence to that of electric current.

6.
J Chem Inf Model ; 61(11): 5626-5643, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34748335

RESUMO

PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa.


Assuntos
Simulação de Dinâmica Molecular , Fosfolipases/química , Pseudomonas aeruginosa , Domínio Catalítico , Dimerização , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato
7.
Nano Lett ; 21(20): 8627-8633, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34634912

RESUMO

We demonstrate long-range superconducting correlations in a several-micrometers-long carbon nanotube bundle encapsulated in a van der Waals stack between hBN and NbSe2. We show that a substantial supercurrent flows through the nanotube section beneath the NbSe2 crystal as well as through the 2 µm long section not in contact with it. The large in-plane critical magnetic field of this supercurrent is an indication that even inside the carbon nanotube Cooper pairs enjoy a degree of paramagnetic protection typical of the parent Ising superconductor. As expected for superconductors of nanoscopic cross section, the current-induced breakdown of superconductivity is characterized by resistance steps due to the nucleation of phase slip centers. All elements of our hybrid device are active building blocks of several recently proposed setups for realization of Majorana fermions in carbon nanotubes.

8.
Nat Commun ; 12(1): 5500, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535654

RESUMO

Monolayer transition-metal dichalcogenides (TMDCs) show a wealth of exciton physics. Here, we report the existence of a new excitonic species, the high-lying exciton (HX), in single-layer WSe2 with an energy of ~3.4 eV, almost twice the band-edge A-exciton energy, with a linewidth as narrow as 5.8 meV. The HX is populated through momentum-selective optical excitation in the K-valleys and is identified in upconverted photoluminescence (UPL) in the UV spectral region. Strong electron-phonon coupling results in a cascaded phonon progression with equidistant peaks in the luminescence spectrum, resolvable to ninth order. Ab initio GW-BSE calculations with full electron-hole correlations explain HX formation and unmask the admixture of upper conduction-band states to this complex many-body excitation. These calculations suggest that the HX is comprised of electrons of negative mass. The coincidence of such high-lying excitonic species at around twice the energy of band-edge excitons rationalizes the excitonic quantum-interference phenomenon recently discovered in optical second-harmonic generation (SHG) and explains the efficient Auger-like annihilation of band-edge excitons.

9.
Phys Rev Lett ; 126(3): 037001, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543978

RESUMO

We present simultaneous measurements of Josephson inductance and dc transport characteristics of ballistic Josephson junctions based upon an epitaxial Al-InAs heterostructure. The Josephson inductance at finite current bias directly reveals the current-phase relation. The proximity-induced gap, the critical current and the average value of the transparency τ[over ¯] are extracted without need for phase bias, demonstrating, e.g., a near-unity value of τ[over ¯]=0.94. Our method allows us to probe the devices deeply in the nondissipative regime, where ordinary transport measurements are featureless. In perpendicular magnetic field the junctions show a nearly perfect Fraunhofer pattern of the critical current, which is insensitive to the value of τ[over ¯]. In contrast, the signature of supercurrent interference in the inductance turns out to be extremely sensitive to τ[over ¯].

10.
Commun Biol ; 4(1): 132, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514861

RESUMO

The metallo-ß-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-ß-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from ß-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-ß-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-ß-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.


Assuntos
Desulfurococcaceae/enzimologia , Evolução Molecular , beta-Lactamases/metabolismo , Cristalografia , Desulfurococcaceae/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , beta-Lactamases/química , beta-Lactamases/genética
11.
Nat Commun ; 10(1): 381, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670686

RESUMO

Illumination of atoms by resonant lasers can pump electrons into a coherent superposition of hyperfine levels which can no longer absorb the light. Such superposition is known as a dark state, because fluorescent light emission is then suppressed. Here we report an all-electric analogue of this destructive interference effect in a carbon nanotube quantum dot. The dark states are a coherent superposition of valley (angular momentum) states which are decoupled from either the drain or the source leads. Their emergence is visible in asymmetric current-voltage characteristics, with missing current steps and current suppression which depend on the polarity of the applied source-drain bias. Our results demonstrate coherent-population trapping by all-electric means in an artificial atom.

12.
Nat Commun ; 8(1): 1551, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146907

RESUMO

Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

13.
Beilstein J Nanotechnol ; 5: 407-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778967

RESUMO

In frequency modulation atomic force microscopy (FM-AFM) the stability of the eigenfrequency of the force sensor is of key importance for highest precision force measurements. Here, we study the influence of temperature changes on the resonance frequency of force sensors made of quartz, in a temperature range from 4.8-48 K. The sensors are based on the qPlus and length extensional principle. The frequency variation with temperature T for all sensors is negative up to 30 K and on the order of 1 ppm/K, up to 13 K, where a distinct kink appears, it is linear. Furthermore, we characterize a new type of miniaturized qPlus sensor and confirm the theoretically predicted reduction in detector noise.

14.
Nanotechnology ; 22(12): 125203, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21317499

RESUMO

A scheme for measuring small intrinsic critical currents I(c) in nanoscale devices is described. Changes in Josephson inductance L(J) are converted to frequency variations that are recorded via microwave reflection measurements at 700-800 MHz. The critical current is determined from the frequency shift of the reflection magnitude at zero phase bias assuming a sinusoidal current-phase relation. The method is used to study a multiwalled carbon nanotube transistor with Pd/Nb contacts inside a resistive on-chip environment. We observe gate-tunable critical currents up to I(c) ∼ 8 nA corresponding to L(J) > 40 nH. The method presented is also applicable to devices shunted by closed superconducting loops.

15.
Phys Rev Lett ; 104(2): 027005, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20366621

RESUMO

We investigate nonlocal vortex motion in weakly pinning a-NbGe nanostructures, which is driven by a transport current I and remotely detected as a nonlocal voltage V{nl}. At a high I of a given polarity, V{nl} changes sign dramatically. This is followed by V{nl} becoming even in I, with the opposite sign at low and high temperatures T. These findings can be explained by a Nernst-like effect resulting from local electron overheating (low T), and a magnetization enhancement due to a nonequilibrium quasiparticle distribution that leads to a gap enhancement near the vortex core (high T).

16.
Nat Nanotechnol ; 5(1): 11-2, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20032983
17.
Nature ; 452(7187): 613-5, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18385735

RESUMO

Synchronized oscillators are ubiquitous in nature, and synchronization plays a key part in various classical and quantum phenomena. Several experiments have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture--superconducting islands immersed into a normal matrix--and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system. Here we show that at a certain finite temperature, a Cooper--air insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.

18.
Phys Rev Lett ; 94(18): 186802, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15904392

RESUMO

We report conductance measurements on multiwall carbon nanotubes in a perpendicular magnetic field. A gate electrode with large capacitance is used to considerably vary the nanotube Fermi level. This enables us to search for signatures of the unique electronic band structure of the nanotubes in the regime of diffusive quantum transport. We find an unusual quenching of the magnetoconductance and the zero bias anomaly in the differential conductance at certain gate voltages, which can be linked to the onset of quasi-one-dimensional subbands.

19.
Science ; 306(5693): 63-4, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15459374
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...