Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Perinatol ; 43(Suppl 1): 49-54, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086967

RESUMO

OBJECTIVE: We designed and implemented a novel neonatal intensive care (NICU) lighting system to support the current understanding of daylight-coupled physiology. METHODS: We created a system that generates wavelengths corresponding to the known blue and violet activation spectra of non-visual opsins. These are known to mediate energy management and related physiologic activity. RESULTS: Light produced by the system spans the visible spectrum, including violet wavelengths that are blocked by modern glazing and not emitted by standard LED fixtures. System features include automated light and dark phases that mimic dawn/dusk. The system also matches length of day seasonality. Spectral composition can be varied to support translational research protocols. Implementation required a comprehensive strategy to inform bedside providers about the value and use of the lighting system. CONCLUSION: Full-spectrum lighting for the NICU is feasible and will inform the optimization of the NICU environment of care to support optimal neonatal growth and development.


Assuntos
Terapia Intensiva Neonatal , Iluminação , Recém-Nascido , Humanos
2.
J Dev Biol ; 9(2)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805906

RESUMO

Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.

3.
PLoS One ; 12(3): e0174206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28346501

RESUMO

Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development.


Assuntos
Anormalidades Craniofaciais/genética , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Crânio/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cílios/genética , Face/anormalidades , Feminino , Deleção de Genes , Cinesinas/genética , Masculino , Camundongos , Crista Neural/embriologia , Crista Neural/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Crânio/anormalidades , Crânio/metabolismo , Proteínas Supressoras de Tumor/genética
4.
Dis Model Mech ; 8(8): 855-66, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26044959

RESUMO

Oral-facial-digital syndrome (OFD) is a ciliopathy that is characterized by oral-facial abnormalities, including cleft lip and/or palate, broad nasal root, dental anomalies, micrognathia and glossal defects. In addition, these individuals have several other characteristic abnormalities that are typical of a ciliopathy, including polysyndactyly, polycystic kidneys and hypoplasia of the cerebellum. Recently, a subset of OFD cases in humans has been linked to mutations in the centriolar protein C2 Ca(2+)-dependent domain-containing 3 (C2CD3). Our previous work identified mutations in C2CD3 as the causal genetic lesion for the avian talpid(2) mutant. Based on this common genetic etiology, we re-examined the talpid(2) mutant biochemically and phenotypically for characteristics of OFD. We found that, as in OFD-affected individuals, protein-protein interactions between C2CD3 and oral-facial-digital syndrome 1 protein (OFD1) are reduced in talpid(2) cells. Furthermore, we found that all common phenotypes were conserved between OFD-affected individuals and avian talpid(2) mutants. In light of these findings, we utilized the talpid(2) model to examine the cellular basis for the oral-facial phenotypes present in OFD. Specifically, we examined the development and differentiation of cranial neural crest cells (CNCCs) when C2CD3-dependent ciliogenesis was impaired. Our studies suggest that although disruptions of C2CD3-dependent ciliogenesis do not affect CNCC specification or proliferation, CNCC migration and differentiation are disrupted. Loss of C2CD3-dependent ciliogenesis affects the dispersion and directional persistence of migratory CNCCs. Furthermore, loss of C2CD3-dependent ciliogenesis results in dysmorphic and enlarged CNCC-derived facial cartilages. Thus, these findings suggest that aberrant CNCC migration and differentiation could contribute to the pathology of oral-facial defects in OFD.


Assuntos
Proteínas Aviárias/genética , Proteínas de Ciclo Celular/genética , Mutação/genética , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/patologia , Animais , Proteínas Aviárias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Embrião de Galinha , Galinhas , Cílios/metabolismo , Modelos Animais de Doenças , Humanos , Crista Neural/embriologia , Crista Neural/patologia , Organogênese , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...