Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Fam Cancer ; 22(2): 135-149, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36029389

RESUMO

In the Republic of Ireland (ROI), BRCA1/BRCA2 genetic testing has been traditionally undertaken in eligible individuals, after pre-test counselling by a Clinical Geneticist/Genetic Counsellor. Clinical Genetics services in ROI are poorly resourced, with routine waiting times for appointments at the time of this pilot often extending beyond a year. The consequent prolonged waiting times are unacceptable where therapeutic decision-making depends on the patient's BRCA status. "Mainstreaming" BRCA1/BRCA2 testing through routine oncology/surgical clinics has been implemented successfully in other centres in the UK and internationally. We aimed to pilot this pathway in three Irish tertiary centres. A service evaluation project was undertaken over a 6-month period between January and July 2017. Eligible patients, fulfilling pathology and age-based inclusion criteria defined by TGL clinical, were identified, and offered constitutional BRCA1/BRCA2 testing after pre-test counselling by treating clinicians. Tests were undertaken by TGL Clinical. Results were returned to clinicians by secure email. Onward referrals of patients with uncertain/pathogenic results, or suspicious family histories, to Clinical Genetics were made by the treating team. Surveys assessing patient and clinician satisfaction were sent to participating clinicians and a sample of participating patients. Data was collected with respect to diagnostic yield, turnaround time, onward referral rates, and patient and clinician feedback. A total of 101  patients underwent diagnostic germline BRCA1/BRCA2 tests through this pathway. Pathogenic variants were identified in 12 patients (12%). All patients in whom variants were identified were appropriately referred to Clinical Genetics. At least 12 additional patients with uninformative BRCA1/BRCA2 tests were also referred for formal assessment by Clinical Geneticist or Genetic Counsellor. Issues were noted in terms of time pressures and communication of results to patients. Results from a representative sample of participants completing the satisfaction survey indicated that the pathway was acceptable to patients and clinicians. Mainstreaming of constitutional BRCA1/BRCA2 testing guided by age- and pathology-based criteria is potentially feasible for patients with breast cancer as well as patients with ovarian cancer in Ireland.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Testes Genéticos , Projetos Piloto , Irlanda , Estudos de Viabilidade , Proteína BRCA2/genética , Proteína BRCA1/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa
2.
JAMA Netw Open ; 2(5): e194428, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31125106

RESUMO

Importance: Increasing BRCA1 and BRCA2 (collectively termed herein as BRCA) gene testing is required to improve cancer management and prevent BRCA-related cancers. Objective: To evaluate mainstream genetic testing using cancer-based criteria in patients with cancer. Design, Setting, and Participants: A quality improvement study and cost-effectiveness analysis of different BRCA testing selection criteria and access procedures to evaluate feasibility, acceptability, and mutation detection performance was conducted at the Royal Marsden National Health Service Foundation Trust as part of the Mainstreaming Cancer Genetics (MCG) Programme. Participants included 1184 patients with cancer who were undergoing genetic testing between September 1, 2013, and February 28, 2017. Main Outcomes and Measures: Mutation rates, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios were the primary outcomes. Results: Of the 1184 patients (1158 women [97.8%]) meeting simple cancer-based criteria, 117 had a BRCA mutation (9.9%). The mutation rate was similar in retrospective United Kingdom (10.2% [235 of 2294]) and prospective Malaysian (9.7% [103 of 1061]) breast cancer studies. If traditional family history criteria had been used, more than 50% of the mutation-positive individuals would have been missed. Of the 117 mutation-positive individuals, 115 people (98.3%) attended their genetics appointment and cascade to relatives is underway in all appropriate families (85 of 85). Combining with the equivalent ovarian cancer study provides 5 simple cancer-based criteria for BRCA testing with a 10% mutation rate: (1) ovarian cancer; (2) breast cancer diagnosed when patients are 45 years or younger; (3) 2 primary breast cancers, both diagnosed when patients are 60 years or younger; (4) triple-negative breast cancer; and (5) male breast cancer. A sixth criterion-breast cancer plus a parent, sibling, or child with any of the other criteria-can be added to address family history. Criteria 1 through 5 are considered the MCG criteria, and criteria 1 through 6 are considered the MCGplus criteria. Testing using MCG or MCGplus criteria is cost-effective with cost-effectiveness ratios of $1330 per discounted QALYs and $1225 per discounted QALYs, respectively, and appears to lead to cancer and mortality reductions (MCG: 804 cancers, 161 deaths; MCGplus: 1020 cancers, 204 deaths per year over 50 years). Use of MCG or MCGplus criteria might allow detection of all BRCA mutations in patients with breast cancer in the United Kingdom through testing one-third of patients. Feedback questionnaires from 259 patients and 23 cancer team members (12 oncologists, 8 surgeons, and 3 nurse specialists) showed acceptability of the process with 100% of patients pleased they had genetic testing and 100% of cancer team members confident to approve patients for genetic testing. Use of MCGplus criteria also appeared to be time and resource efficient, requiring 95% fewer genetic consultations than the traditional process. Conclusions and Relevance: This study suggests that mainstream testing using simple, cancer-based criteria might be able to efficiently deliver consistent, cost-effective, patient-centered BRCA testing.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Detecção Precoce de Câncer/normas , Predisposição Genética para Doença , Testes Genéticos/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Custo-Benefício/estatística & dados numéricos , Feminino , Humanos , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Estudos Prospectivos , Estudos Retrospectivos , Medicina Estatal/normas , Reino Unido
3.
Wellcome Open Res ; 3: 68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175241

RESUMO

The analytical sensitivity of a next generation sequencing (NGS) test reflects the ability of the test to detect real sequence variation. The evaluation of analytical sensitivity relies on the availability of gold-standard, validated, benchmarking datasets. For NGS analysis the availability of suitable datasets has been limited. Most laboratories undertake small scale evaluations using in-house data, and/or rely on in silico generated datasets to evaluate the performance of NGS variant detection pipelines. Cancer predisposition genes (CPGs), such as BRCA1 and BRCA2, are amongst the most widely tested genes in clinical practice today. Hundreds of providers across the world are now offering CPG testing using NGS methods. Validating and comparing the analytical sensitivity of CPG tests has proved difficult, due to the absence of comprehensive, orthogonally validated, benchmarking datasets of CPG pathogenic variants. To address this we present the ICR639 CPG NGS validation series. This dataset comprises data from 639 individuals. Each individual has sequencing data generated using the TruSight Cancer Panel (TSCP), a targeted NGS assay for the analysis of CPGs, together with orthogonally generated data showing the presence of at least one CPG pathogenic variant per individual. The set consists of 645 pathogenic variants in total. There is strong representation of the most challenging types of variants to detect, with 339 indels, including 16 complex indels and 24 with length greater than five base pairs and 74 exon copy number variations (CNVs) including 23 single exon CNVs. The series includes pathogenic variants in 31 CPGs, including 502 pathogenic variants in BRCA1 or BRCA2, making this an important comprehensive validation dataset for providers of BRCA1 and BRCA2 NGS testing. We have deposited the TSCP FASTQ files of the ICR639 series in the European Genome-phenome Archive (EGA) under accession number EGAD00001004134.

4.
Wellcome Open Res ; 3: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29992192

RESUMO

Next generation sequencing (NGS) is routinely used in clinical genetic testing. Quality management of NGS testing is essential to ensure performance is consistently and rigorously evaluated. Three primary metrics are used in NGS quality evaluation: depth of coverage, base quality and mapping quality. To provide consistency and transparency in the utilisation of these metrics we present the Quality Sequencing Minimum (QSM). The QSM defines the minimum quality requirement a laboratory has selected for depth of coverage (C), base quality (B) and mapping quality (M) and can be applied per base, exon, gene or other genomic region, as appropriate. The QSM format is CX_BY(P Y)_MZ(P Z). X is the parameter threshold for C, Y the parameter threshold for B, P Y the percentage of reads that must reach Y, Z the parameter threshold for M, P Z the percentage of reads that must reach Z. The data underlying the QSM is in the BAM file, so a QSM can be easily and automatically calculated in any NGS pipeline. We used the QSM to optimise cancer predisposition gene testing using the TruSight Cancer Panel (TSCP). We set the QSM as C50_B10(85)_M20(95). Test regions falling below the QSM were automatically flagged for review, with 100/1471 test regions QSM-flagged in multiple individuals. Supplementing these regions with 132 additional probes improved performance in 85/100. We also used the QSM to optimise testing of genes with pseudogenes such as PTEN and PMS2. In TSCP data from 960 individuals the median number of regions that passed QSM per sample was 1429 (97%).  Importantly, the QSM can be used at an individual report level to provide succinct, comprehensive quality assurance information about individual test performance. We believe many laboratories would find the QSM useful. Furthermore, widespread adoption of the QSM would facilitate consistent, transparent reporting of genetic test performance by different laboratories.

5.
Wellcome Open Res ; 3: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881786

RESUMO

Quality assurance and quality control are essential for robust next generation sequencing (NGS). Here we present CoverView, a fast, flexible, user-friendly quality evaluation tool for NGS data. CoverView processes mapped sequencing reads and user-specified regions to report depth of coverage, base and mapping quality metrics with increasing levels of detail from a chromosome-level summary to per-base profiles. CoverView can flag regions that do not fulfil user-specified quality requirements, allowing suboptimal data to be systematically and automatically presented for review. It also provides an interactive graphical user interface (GUI) that can be opened in a web browser and allows intuitive exploration of results. We have integrated CoverView into our accredited clinical cancer predisposition gene testing laboratory that uses the TruSight Cancer Panel (TSCP). CoverView has been invaluable for optimisation and quality control of our testing pipeline, providing transparent, consistent quality metric information and automatic flagging of regions that fall below quality thresholds. We demonstrate this utility with TSCP data from the Genome in a Bottle reference sample, which CoverView analysed in 13 seconds. CoverView uses data routinely generated by NGS pipelines, reads standard input formats, and rapidly creates easy-to-parse output text (.txt) files that are customised by a simple configuration file. CoverView can therefore be easily integrated into any NGS pipeline. CoverView and detailed documentation for its use are freely available at github.com/RahmanTeamDevelopment/CoverView/releases and www.icr.ac.uk/CoverView.

6.
Wellcome Open Res ; 2: 35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28630945

RESUMO

Detection of deletions and duplications of whole exons (exon CNVs) is a key requirement of genetic testing. Accurate detection of this variant type has proved very challenging in targeted next-generation sequencing (NGS) data, particularly if only a single exon is involved. Many different NGS exon CNV calling methods have been developed over the last five years. Such methods are usually evaluated using simulated and/or in-house data due to a lack of publicly-available datasets with orthogonally generated results. This hinders tool comparisons, transparency and reproducibility. To provide a community resource for assessment of exon CNV calling methods in targeted NGS data, we here present the ICR96 exon CNV validation series. The dataset includes high-quality sequencing data from a targeted NGS assay (the TruSight Cancer Panel) together with Multiplex Ligation-dependent Probe Amplification (MLPA) results for 96 independent samples. 66 samples contain at least one validated exon CNV and 30 samples have validated negative results for exon CNVs in 26 genes. The dataset includes 46 exon CNVs in BRCA1, BRCA2, TP53, MLH1, MSH2, MSH6, PMS2, EPCAM or PTEN, giving excellent representation of the cancer predisposition genes most frequently tested in clinical practice. Moreover, the validated exon CNVs include 25 single exon CNVs, the most difficult type of exon CNV to detect. The FASTQ files for the ICR96 exon CNV validation series can be accessed through the European-Genome phenome Archive (EGA) under the accession number EGAS00001002428.

7.
Value Health ; 20(4): 567-576, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28407998

RESUMO

OBJECTIVES: To evaluate the long-term cost-effectiveness of germline BRCA1 and BRCA2 (collectively termed "BRCA") testing in women with epithelial ovarian cancer, and testing for the relevant mutation in first- and second-degree relatives of BRCA mutation-positive individuals, compared with no testing. Female BRCA mutation-positive relatives of patients with ovarian cancer could undergo risk-reducing mastectomy and/or bilateral salpingo-oophorectomy. METHODS: A cost-effectiveness model was developed that included the risks of breast and ovarian cancer; the costs, utilities, and effects of risk-reducing surgery on cancer rates; and the costs, utilities, and mortality rates associated with cancer. RESULTS: BRCA testing of all women with epithelial ovarian cancer each year is cost-effective at a UK willingness-to-pay threshold of £20,000/quality-adjusted life-year (QALY) compared with no testing, with an incremental cost-effectiveness ratio of £4,339/QALY. The result was primarily driven by fewer cases of breast cancer (142) and ovarian cancer (141) and associated reductions in mortality (77 fewer deaths) in relatives over the subsequent 50 years. Sensitivity analyses showed that the results were robust to variations in the input parameters. Probabilistic sensitivity analysis showed that the probability of germline BRCA mutation testing being cost-effective at a threshold of £20,000/QALY was 99.9%. CONCLUSIONS: Implementing germline BRCA testing in all patients with ovarian cancer would be cost-effective in the United Kingdom. The consequent reduction in future cases of breast and ovarian cancer in relatives of mutation-positive individuals would ease the burden of cancer treatments in subsequent years and result in significantly better outcomes and reduced mortality rates for these individuals.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Análise Mutacional de DNA/economia , Detecção Precoce de Câncer/economia , Testes Genéticos/economia , Mutação em Linhagem Germinativa , Custos de Cuidados de Saúde , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/economia , Neoplasias da Mama/terapia , Carcinoma Epitelial do Ovário , Simulação por Computador , Análise Custo-Benefício , Técnicas de Apoio para a Decisão , Detecção Precoce de Câncer/métodos , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Hereditariedade , Humanos , Pessoa de Meia-Idade , Modelos Econômicos , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/economia , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/economia , Neoplasias Ovarianas/terapia , Linhagem , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Anos de Vida Ajustados por Qualidade de Vida , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo , Reino Unido
8.
Sci Rep ; 6: 29506, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27406733

RESUMO

Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases.


Assuntos
Testes Genéticos/economia , Neoplasias/diagnóstico , Neoplasias/genética , Assistência Centrada no Paciente/economia , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA1/genética , Proteína BRCA2/genética , Análise Custo-Benefício , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Pessoa de Meia-Idade , Modelos Organizacionais , Mutação , Satisfação do Paciente , Assistência Centrada no Paciente/métodos , Desenvolvimento de Programas , Inquéritos e Questionários , Adulto Jovem
9.
J Community Genet ; 7(3): 185-94, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26922077

RESUMO

Technological advances in DNA sequencing have made gene testing fast and more affordable. Evidence of effectiveness and cost-effectiveness of genetic service models is essential for the successful translation of sequencing improvements for patient benefit, but remain sparse in the genetics literature. In particular, there is a lack of detailed cost data related to genetic services. A detailed micro-costing of 28 possible pathways relating to breast and/or ovarian cancer and BRCA testing was carried out by defining service activities and establishing associated costs. These data were combined with patient-level data from a Royal Marsden Cancer Genetics Service audit over a 6-month period during which BRCA testing was offered to individuals at ≥10 % risk of having a mutation, in line with current NICE guidance. The average cost across all patient pathways was £2227.39 (range £376.51 to £13,553.10). The average cost per pathway for an affected person was £1897.75 compared to £2410.53 for an unaffected person. Of the women seen in the Cancer Genetics Service during the audit, 38 % were affected with breast and/or ovarian cancer, and 62 % were unaffected but concerned about their family history. The most efficient service strategy is to identify unaffected relatives from an affected individual with an identified BRCA mutation. Implementation of this strategy would require more comprehensive testing of all eligible cancer patients, which could be achieved by integrating BRCA testing into oncology services. Such integration would be also more time-efficient and deliver greater equity of access to BRCA testing than the standard service model.

10.
F1000Res ; 5: 386, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158454

RESUMO

To provide a useful community resource for orthogonal assessment of NGS analysis software, we present the ICR142 NGS validation series. The dataset includes high-quality exome sequence data from 142 samples together with Sanger sequence data at 704 sites; 416 sites with variants and 288 sites at which variants were called by an NGS analysis tool, but no variant is present in the corresponding Sanger sequence. The dataset includes 293 indel variants and 247 negative indel sites, and thus the ICR142 validation dataset is of particular utility in evaluating indel calling performance. The FASTQ files and Sanger sequence results can be accessed in the European Genome-phenome Archive under the accession number EGAS00001001332.

11.
Wellcome Open Res ; 1: 20, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28459104

RESUMO

Background: Targeted next generation sequencing (NGS) panels are increasingly being used in clinical genomics to increase capacity, throughput and affordability of gene testing. Identifying whole exon deletions or duplications (termed exon copy number variants, 'exon CNVs') in exon-targeted NGS panels has proved challenging, particularly for single exon CNVs.  Methods: We developed a tool for the Detection of Exon Copy Number variants (DECoN), which is optimised for analysis of exon-targeted NGS panels in the clinical setting. We evaluated DECoN performance using 96 samples with independently validated exon CNV data. We performed simulations to evaluate DECoN detection performance of single exon CNVs and to evaluate performance using different coverage levels and sample numbers. Finally, we implemented DECoN in a clinical laboratory that tests BRCA1 and BRCA2 with the TruSight Cancer Panel (TSCP). We used DECoN to analyse 1,919 samples, validating exon CNV detections by multiplex ligation-dependent probe amplification (MLPA).  Results: In the evaluation set, DECoN achieved 100% sensitivity and 99% specificity for BRCA exon CNVs, including identification of 8 single exon CNVs. DECoN also identified 14/15 exon CNVs in 8 other genes. Simulations of all possible BRCA single exon CNVs gave a mean sensitivity of 98% for deletions and 95% for duplications. DECoN performance remained excellent with different levels of coverage and sample numbers; sensitivity and specificity was >98% with the typical NGS run parameters. In the clinical pipeline, DECoN automatically analyses pools of 48 samples at a time, taking 24 minutes per pool, on average. DECoN detected 24 BRCA exon CNVs, of which 23 were confirmed by MLPA, giving a false discovery rate of 4%. Specificity was 99.7%.  Conclusions: DECoN is a fast, accurate, exon CNV detection tool readily implementable in research and clinical NGS pipelines. It has high sensitivity and specificity and acceptable false discovery rate. DECoN is freely available at www.icr.ac.uk/decon.

12.
Genome Med ; 7: 76, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26315209

RESUMO

BACKGROUND: Next-generation sequencing (NGS) offers unprecedented opportunities to expand clinical genomics. It also presents challenges with respect to integration with data from other sequencing methods and historical data. Provision of consistent, clinically applicable variant annotation of NGS data has proved difficult, particularly of indels, an important variant class in clinical genomics. Annotation in relation to a reference genome sequence, the DNA strand of coding transcripts and potential alternative variant representations has not been well addressed. Here we present tools that address these challenges to provide rapid, standardized, clinically appropriate annotation of NGS data in line with existing clinical standards. METHODS: We developed a clinical sequencing nomenclature (CSN), a fixed variant annotation consistent with the principles of the Human Genome Variation Society (HGVS) guidelines, optimized for automated variant annotation of NGS data. To deliver high-throughput CSN annotation we created CAVA (Clinical Annotation of VAriants), a fast, lightweight tool designed for easy incorporation into NGS pipelines. CAVA allows transcript specification, appropriately accommodates the strand of a gene transcript and flags variants with alternative annotations to facilitate clinical interpretation and comparison with other datasets. We evaluated CAVA in exome data and a clinical BRCA1/BRCA2 gene testing pipeline. RESULTS: CAVA generated CSN calls for 10,313,034 variants in the ExAC database in 13.44 hours, and annotated the ICR1000 exome series in 6.5 hours. Evaluation of 731 different indels from a single individual revealed 92 % had alternative representations in left aligned and right aligned data. Annotation of left aligned data, as performed by many annotation tools, would thus give clinically discrepant annotation for the 339 (46 %) indels in genes transcribed from the forward DNA strand. By contrast, CAVA provides the correct clinical annotation for all indels. CAVA also flagged the 370 indels with alternative representations of a different functional class, which may profoundly influence clinical interpretation. CAVA annotation of 50 BRCA1/BRCA2 gene mutations from a clinical pipeline gave 100 % concordance with Sanger data; only 8/25 BRCA2 mutations were correctly clinically annotated by other tools. CONCLUSIONS: CAVA is a freely available tool that provides rapid, robust, high-throughput clinical annotation of NGS data, using a standardized clinical sequencing nomenclature.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA , Proteína BRCA1/genética , Proteína BRCA2/genética , Exoma , Humanos , Mutação
13.
F1000Res ; 4: 883, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834991

RESUMO

To enhance knowledge of gene variation in outbred populations, and to provide a dataset with utility in research and clinical genomics, we performed exome sequencing of 1,000 UK individuals from the general population and applied a high-quality analysis pipeline that includes high sensitivity and specificity for indel detection. Each UK individual has, on average, 21,978 gene variants including 160 rare (0.1%) variants not present in any other individual in the series. These data provide a baseline expectation for gene variation in an outbred population. Summary data of all 295,391 variants we detected are included here and the individual exome sequences are available from the European Genome-phenome Archive as the ICR1000 UK exome series. Furthermore, samples and other phenotype and experimental data for these individuals are obtainable through application to the 1958 Birth Cohort committee.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...